These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27713348)

  • 41. Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles.
    Vemparala S; Saiz L; Eckenhoff RG; Klein ML
    Biophys J; 2006 Oct; 91(8):2815-25. PubMed ID: 16877515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The common chemical motifs within anesthetic binding sites.
    Bertaccini EJ; Trudell JR; Franks NP
    Anesth Analg; 2007 Feb; 104(2):318-24. PubMed ID: 17242087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods.
    Oakes V; Domene C
    Chem Rev; 2019 May; 119(9):5998-6014. PubMed ID: 30358391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels.
    Fourati Z; Howard RJ; Heusser SA; Hu H; Ruza RR; Sauguet L; Lindahl E; Delarue M
    Cell Rep; 2018 Apr; 23(4):993-1004. PubMed ID: 29694907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Binding of the volatile anesthetic halothane to the hydrophobic core of a tetra-alpha-helix-bundle protein.
    Johansson JS; Rabanal F; Dutton PL
    J Pharmacol Exp Ther; 1996 Oct; 279(1):56-61. PubMed ID: 8858975
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein.
    Liu R; Loll PJ; Eckenhoff RG
    FASEB J; 2005 Apr; 19(6):567-76. PubMed ID: 15791007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.
    Sansom MS; Adcock C; Smith GR
    J Struct Biol; 1998; 121(2):246-62. PubMed ID: 9615441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of the
    Faulkner C; Plant DF; de Leeuw NH
    Biochemistry; 2019 Dec; 58(48):4804-4808. PubMed ID: 31718178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel.
    Treptow W; Maigret B; Chipot C; Tarek M
    Biophys J; 2004 Oct; 87(4):2365-79. PubMed ID: 15454436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Location and Character of Volatile General Anesthetics Binding Sites in the Transmembrane Domain of TRPV1.
    Jorgensen C; Domene C
    Mol Pharm; 2018 Sep; 15(9):3920-3930. PubMed ID: 30067911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian γ-aminobutyric acid type A receptors.
    Franks NP
    Anesthesiology; 2015 Apr; 122(4):787-94. PubMed ID: 25575161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulation of a hydrated diphytanol phosphatidylcholine lipid bilayer containing an alpha-helical bundle of four transmembrane domains of the influenza A virus M2 protein.
    Husslein T; Moore PB; Zhong Q; Newns DM; Pattnaik PC; Klein ML
    Faraday Discuss; 1998; (111):201-8; discussion 225-46. PubMed ID: 10822610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC.
    Chen Q; Kinde MN; Arjunan P; Wells MM; Cohen AE; Xu Y; Tang P
    Sci Rep; 2015 Sep; 5():13833. PubMed ID: 26346220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anesthetic mechanisms in-vitro and in general anesthesia.
    Urban BW; Friederich P
    Toxicol Lett; 1998 Nov; 100-101():9-16. PubMed ID: 10049187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels.
    Raines DE; Claycomb RJ; Scheller M; Forman SA
    Anesthesiology; 2001 Aug; 95(2):470-7. PubMed ID: 11506122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles.
    Law RJ; Forrest LR; Ranatunga KM; La Rocca P; Tieleman DP; Sansom MS
    Proteins; 2000 Apr; 39(1):47-55. PubMed ID: 10737926
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The membrane lipid cholesterol modulates anesthetic actions on a human brain ion channel.
    Rehberg B; Urban BW; Duch DS
    Anesthesiology; 1995 Mar; 82(3):749-58. PubMed ID: 7879943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation.
    Flood E; Boiteux C; Lev B; Vorobyov I; Allen TW
    Chem Rev; 2019 Jul; 119(13):7737-7832. PubMed ID: 31246417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.