These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27713522)

  • 1. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism.
    Kim TH; Grünberg P; Han SH; Cho B
    Sci Rep; 2016 Oct; 6():35077. PubMed ID: 27713522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-Controlled Dzyaloshinskii-Moriya Interaction Torque Switching of Perpendicular Magnetization.
    Yu D; Ga Y; Liang J; Jia C; Yang H
    Phys Rev Lett; 2023 Feb; 130(5):056701. PubMed ID: 36800473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain-wall motion at an ultrahigh speed driven by spin-orbit torque in synthetic antiferromagnets.
    Yu Z; Zhang Y; Zhang Z; Cheng M; Lu Z; Yang X; Shi J; Xiong R
    Nanotechnology; 2018 Apr; 29(17):175404. PubMed ID: 29443012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-Free Spin-Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii-Moriya Interaction.
    He W; Wan C; Zheng C; Wang Y; Wang X; Ma T; Wang Y; Guo C; Luo X; Stebliy ME; Yu G; Liu Y; Ognev AV; Samardak AS; Han X
    Nano Lett; 2022 Sep; 22(17):6857-6865. PubMed ID: 35849087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-driven dynamics and time-resolved measurement of Dzyaloshinskii-Moriya torque in canted antiferromagnet YFeO
    Kim TH; Grüenberg P; Han SH; Cho BK
    Sci Rep; 2017 Jul; 7(1):4515. PubMed ID: 28674399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inverse thermal spin-orbit torque and the relation of the Dzyaloshinskii-Moriya interaction to ground-state energy currents.
    Freimuth F; Blügel S; Mokrousov Y
    J Phys Condens Matter; 2016 Aug; 28(31):316001. PubMed ID: 27301682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz Spin Current Dynamics in Antiferromagnetic Hematite.
    Qiu H; Seifert TS; Huang L; Zhou Y; Kašpar Z; Zhang C; Wu J; Fan K; Zhang Q; Wu D; Kampfrath T; Song C; Jin B; Chen J; Wu P
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300512. PubMed ID: 37083225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of two spin-transfer-driven nano-oscillators coupled via magnetostatic fields.
    Mancilla-Almonacid D; Leon AO; Arias RE; Allende S; Altbir D
    Phys Rev E; 2019 Mar; 99(3-1):032210. PubMed ID: 30999469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz magnetic excitation in antiferromagnets: atomistic spin simulations versus a coupled pendulum model.
    Zheng C; Chen X; Zhou S; Liu Y
    J Phys Condens Matter; 2022 Dec; 35(8):. PubMed ID: 36540946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvilinear One-Dimensional Antiferromagnets.
    Pylypovskyi OV; Kononenko DY; Yershov KV; Rößler UK; Tomilo AV; Fassbender J; van den Brink J; Makarov D; Sheka DD
    Nano Lett; 2020 Nov; 20(11):8157-8162. PubMed ID: 32986440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal chiral-triggered magnetization switching in confined nanodots.
    Martinez E; Torres L; Perez N; Hernandez MA; Raposo V; Moretti S
    Sci Rep; 2015 Jun; 5():10156. PubMed ID: 26062075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin-Orbit Torque.
    Wu H; Nance J; Razavi SA; Lujan D; Dai B; Liu Y; He H; Cui B; Wu D; Wong K; Sobotkiewich K; Li X; Carman GP; Wang KL
    Nano Lett; 2021 Jan; 21(1):515-521. PubMed ID: 33338380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient-Induced Dzyaloshinskii-Moriya Interaction.
    Liang J; Chshiev M; Fert A; Yang H
    Nano Lett; 2022 Dec; 22(24):10128-10133. PubMed ID: 36520645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetization Dynamics Modulated by Dzyaloshinskii-Moriya Interaction in the Double-Interface Spin-Transfer Torque Magnetic Tunnel Junction.
    Li S; Wang Z; Wang Y; Wang M; Zhao W
    Nanoscale Res Lett; 2019 Sep; 14(1):315. PubMed ID: 31522317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets.
    Fernández-Pacheco A; Vedmedenko E; Ummelen F; Mansell R; Petit D; Cowburn RP
    Nat Mater; 2019 Jul; 18(7):679-684. PubMed ID: 31160802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-driven Domain Wall Motion in Ferromagnetic Nanowires with Bulk Dzyaloshinskii-Moriya Interaction.
    Zhuo F; Sun ZZ
    Sci Rep; 2016 Apr; 6():25122. PubMed ID: 27118064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omnidirectional flat bands in chiral magnonic crystals.
    Flores-Farías J; Gallardo RA; Brevis F; Roldán-Molina A; Cortés-Ortuño D; Landeros P
    Sci Rep; 2022 Oct; 12(1):17831. PubMed ID: 36284121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction.
    Liu Q; Liu L; Xing G; Zhu L
    Nat Commun; 2024 Apr; 15(1):2978. PubMed ID: 38582790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between Spin-Orbit Torques and Dzyaloshinskii-Moriya Interactions in Ferrimagnetic Amorphous Alloys.
    Quessab Y; Xu JW; Morshed MG; Ghosh AW; Kent AD
    Adv Sci (Weinh); 2021 Sep; 8(18):e2100481. PubMed ID: 34338450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hole doping induced ferromagnetism and Dzyaloshinskii-Moriya interaction in the two-dimensional group-IVA oxides.
    Li P; Ga Y; Cui Q; Liang J; Yu D; Yang H
    J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.