These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 27713527)
1. Thermal and Thermoelectric Transport in Highly Resistive Single Sb Ko TY; Shellaiah M; Sun KW Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527 [TBL] [Abstract][Full Text] [Related]
2. Diameter-controlled and surface-modified Sb₂Se₃ nanowires and their photodetector performance. Choi D; Jang Y; Lee J; Jeong GH; Whang D; Hwang SW; Cho KS; Kim SW Sci Rep; 2014 Oct; 4():6714. PubMed ID: 25336056 [TBL] [Abstract][Full Text] [Related]
3. Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors. Karg SF; Troncale V; Drechsler U; Mensch P; Das Kanungo P; Schmid H; Schmidt V; Gignac L; Riel H; Gotsmann B Nanotechnology; 2014 Aug; 25(30):305702. PubMed ID: 25004861 [TBL] [Abstract][Full Text] [Related]
4. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. Lee SH; Shim W; Jang SY; Roh JW; Kim P; Park J; Lee W Nanotechnology; 2011 Jul; 22(29):295707. PubMed ID: 21677373 [TBL] [Abstract][Full Text] [Related]
5. Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires. Bäßler S; Böhnert T; Gooth J; Schumacher C; Pippel E; Nielsch K Nanotechnology; 2013 Dec; 24(49):495402. PubMed ID: 24231731 [TBL] [Abstract][Full Text] [Related]
6. Thermal conductivity and secondary porosity of single anatase TiO₂ nanowire. Feng X; Huang X; Wang X Nanotechnology; 2012 May; 23(18):185701. PubMed ID: 22499063 [TBL] [Abstract][Full Text] [Related]
7. Organometallically Anisotropic Growth of Ultralong Sb2Se3 Nanowires with Highly Enhanced Photothermal Response. Chen G; Zhou J; Zuo J; Yang Q ACS Appl Mater Interfaces; 2016 Feb; 8(4):2819-25. PubMed ID: 26744773 [TBL] [Abstract][Full Text] [Related]
8. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires. Kim J; Lee S; Brovman YM; Kim P; Lee W Nanoscale; 2015 Mar; 7(11):5053-9. PubMed ID: 25697788 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology. Hyun Y; Park Y; Choi W; Kim J; Zyung T; Jang M Nanotechnology; 2012 Oct; 23(40):405707. PubMed ID: 22995969 [TBL] [Abstract][Full Text] [Related]
10. Enhanced thermoelectric performance of rough silicon nanowires. Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582 [TBL] [Abstract][Full Text] [Related]
11. Diameter dependent thermoelectric properties of individual SnTe nanowires. Xu EZ; Li Z; Martinez JA; Sinitsyn N; Htoon H; Li N; Swartzentruber B; Hollingsworth JA; Wang J; Zhang SX Nanoscale; 2015 Feb; 7(7):2869-76. PubMed ID: 25623253 [TBL] [Abstract][Full Text] [Related]
12. Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device. Weathers A; Bi K; Pettes MT; Shi L Rev Sci Instrum; 2013 Aug; 84(8):084903. PubMed ID: 24007092 [TBL] [Abstract][Full Text] [Related]
14. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K. Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378 [TBL] [Abstract][Full Text] [Related]
15. Thermoelectric properties of SnSe nanowires with different diameters. Hernandez JA; Ruiz A; Fonseca LF; Pettes MT; Jose-Yacaman M; Benitez A Sci Rep; 2018 Aug; 8(1):11966. PubMed ID: 30097631 [TBL] [Abstract][Full Text] [Related]
16. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
17. The influence of a Te-depleted surface on the thermoelectric transport properties of Bi₂Te₃ nanowires. Hamdou B; Beckstedt A; Kimling J; Dorn A; Akinsinde L; Bäßler S; Pippel E; Nielsch K Nanotechnology; 2014 Sep; 25(36):365401. PubMed ID: 25140827 [TBL] [Abstract][Full Text] [Related]
18. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755 [TBL] [Abstract][Full Text] [Related]
19. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires. Wang Z; Kojda D; Peranio N; Kroener M; Mitdank R; Toellner W; Nielsch K; Fischer SF; Gutsch S; Zacharias M; Eibl O; Woias P Nanotechnology; 2015 Mar; 26(12):125707. PubMed ID: 25743098 [TBL] [Abstract][Full Text] [Related]
20. Seebeck coefficient characterization of highly doped n- and p-type silicon nanowires for thermoelectric device applications fabricated with top-down approach. Kim J; Hyun Y; Park Y; Choi W; Kim S; Jeon H; Zyung T; Jang M J Nanosci Nanotechnol; 2013 Sep; 13(9):6416-9. PubMed ID: 24205673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]