BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27713685)

  • 1. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.
    Waytowich NR; Lawhern VJ; Bohannon AW; Ball KR; Lance BJ
    Front Neurosci; 2016; 10():430. PubMed ID: 27713685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Cross-Subject Performance of the ERP-Based Brain-Computer Interface Using Rapid Serial Visual Presentation and Correlation Analysis Rank.
    Liu S; Wang W; Sheng Y; Zhang L; Xu M; Ming D
    Front Hum Neurosci; 2020; 14():296. PubMed ID: 32848671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation.
    Zheng L; Sun S; Zhao H; Pei W; Chen H; Gao X; Zhang L; Wang Y
    Front Neurosci; 2020; 14():579469. PubMed ID: 33192265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ERP prototypical matching net: a meta-learning method for zero-calibration RSVP-based image retrieval.
    Wei W; Qiu S; Zhang Y; Mao J; He H
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35299166
    [No Abstract]   [Full Text] [Related]  

  • 6. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees.
    Hübner D; Verhoeven T; Schmid K; Müller KR; Tangermann M; Kindermans PJ
    PLoS One; 2017; 12(4):e0175856. PubMed ID: 28407016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subject-independent brain-computer interface based on smoothed, second-order baselining.
    Reuderink B; Farquhar J; Poel M; Nijholt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4600-4. PubMed ID: 22255362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Transfer Learning Framework for RSVP-based Brain Computer Interface
    Wei W; Qiu S; Ma X; Li D; Zhang C; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2963-2968. PubMed ID: 33018628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces.
    Awais MA; Ward T; Redmond P; Healy G
    J Neural Eng; 2024 Jun; ():. PubMed ID: 38941986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Trial EEG Classification Using Spatio-Temporal Weighting and Correlation Analysis for RSVP-Based Collaborative Brain Computer Interface.
    Zhao Z; Lin Y; Wang Y; Gao X
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):553-562. PubMed ID: 37756179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 12. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eliminating or Shortening the Calibration for a P300 Brain-Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study.
    Gao W; Huang W; Li M; Gu Z; Pan J; Yu T; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1754-1763. PubMed ID: 37030734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training.
    Berke Guney O; Ozkan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535036
    [No Abstract]   [Full Text] [Related]  

  • 16. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.
    Marathe AR; Lawhern VJ; Wu D; Slayback D; Lance BJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):333-43. PubMed ID: 26600162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding.
    Jeng PY; Wei CS; Jung TP; Wang LC
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1915-1925. PubMed ID: 32960770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-Related Alpha Attenuation in a Brain-Computer Interface Rapid Serial Visual Presentation Calibration.
    Klee D; Memmott T; Smedemark-Margulies N; Celik B; Erdogmus D; Oken BS
    Front Hum Neurosci; 2022; 16():882557. PubMed ID: 35529775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning with large-scale data in brain-computer interfaces.
    Chun-Shu Wei ; Yuan-Pin Lin ; Yu-Te Wang ; Chin-Teng Lin ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4666-4669. PubMed ID: 28269314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.