These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27713741)

  • 1. Engineering of TM1459 from
    Fink M; Trunk S; Hall M; Schwab H; Steiner K
    Front Microbiol; 2016; 7():1511. PubMed ID: 27713741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Well-Defined Osmium-Cupin Complex: Hyperstable Artificial Osmium Peroxygenase.
    Fujieda N; Nakano T; Taniguchi Y; Ichihashi H; Sugimoto H; Morimoto Y; Nishikawa Y; Kurisu G; Itoh S
    J Am Chem Soc; 2017 Apr; 139(14):5149-5155. PubMed ID: 28340294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a novel manganese-containing cupin (TM1459) from Thermotoga maritima at 1.65 A resolution.
    Jaroszewski L; Schwarzenbacher R; von Delft F; McMullan D; Brinen LS; Canaves JM; Dai X; Deacon AM; DiDonato M; Elsliger MA; Eshagi S; Floyd R; Godzik A; Grittini C; Grzechnik SK; Hampton E; Levin I; Karlak C; Klock HE; Koesema E; Kovarik JS; Kreusch A; Kuhn P; Lesley SA; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Page R; Quijano K; Reyes R; Rezezadeh F; Robb A; Sims E; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; Wang X; West B; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA
    Proteins; 2004 Aug; 56(3):611-4. PubMed ID: 15229893
    [No Abstract]   [Full Text] [Related]  

  • 4. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima).
    Mahadevan SA; Wi SG; Lee DS; Bae HJ
    FEMS Microbiol Lett; 2008 Oct; 287(2):205-11. PubMed ID: 18752623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima.
    Ozturk H; Ece S; Gundeger E; Evran S
    J Biosci Bioeng; 2013 Oct; 116(4):449-51. PubMed ID: 23702189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostable D-amino acid decarboxylases derived from Thermotoga maritima diaminopimelate decarboxylase.
    Marjanovic A; Ramírez-Palacios CJ; Masman MF; Drenth J; Otzen M; Marrink SJ; Janssen DB
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34258615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermophilic topoisomerase I from Thermotoga maritima. A very efficient enzyme that functions independently of zinc binding.
    Viard T; Lamour V; Duguet M; Bouthier de la Tour C
    J Biol Chem; 2001 Dec; 276(49):46495-503. PubMed ID: 11577108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability and reactivity of Thermotoga maritima in latex bimodal blend coatings at 80 degrees C: a model high temperature biocatalytic coating.
    Lyngberg OK; Solheid C; Charaniya S; Ma Y; Thiagarajan V; Scriven LE; Flickinger MC
    Extremophiles; 2005 Jun; 9(3):197-207. PubMed ID: 15778817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel endonucleolytic mechanism to generate the CCA 3' termini of tRNA molecules in Thermotoga maritima.
    Minagawa A; Takaku H; Takagi M; Nashimoto M
    J Biol Chem; 2004 Apr; 279(15):15688-97. PubMed ID: 14749326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved activity of a thermophilic cellulase, Cel5A, from Thermotoga maritima on ionic liquid pretreated switchgrass.
    Chen Z; Pereira JH; Liu H; Tran HM; Hsu NS; Dibble D; Singh S; Adams PD; Sapra R; Hadi MZ; Simmons BA; Sale KL
    PLoS One; 2013; 8(11):e79725. PubMed ID: 24244549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel d-amino acid aminotransferase involved in d-glutamate biosynthetic pathways in the hyperthermophile Thermotoga maritima.
    Miyamoto T; Moriya T; Katane M; Saitoh Y; Sekine M; Sakai-Kato K; Oshima T; Homma H
    FEBS J; 2022 Oct; 289(19):5933-5946. PubMed ID: 35377552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermotoga maritima ribonuclease III. Characterization of thermostable biochemical behavior and analysis of conserved base pairs that function as reactivity epitopes for the Thermotoga 23S rRNA precursor.
    Nathania L; Nicholson AW
    Biochemistry; 2010 Aug; 49(33):7164-78. PubMed ID: 20677811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced catalytic efficiency in quercetin-4'-glucoside hydrolysis of Thermotoga maritima β-glucosidase A by site-directed mutagenesis.
    Sun H; Xue Y; Lin Y
    J Agric Food Chem; 2014 Jul; 62(28):6763-70. PubMed ID: 24933681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes.
    Fujieda N; Ichihashi H; Yuasa M; Nishikawa Y; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 May; 59(20):7717-7720. PubMed ID: 32073197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylornithine aminotransferase TM1785 performs multiple functions in the hyperthermophile Thermotoga maritima.
    Miyamoto T; Saitoh Y; Katane M; Sekine M; Sakai-Kato K; Homma H
    FEBS Lett; 2021 Dec; 595(23):2931-2941. PubMed ID: 34747014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion.
    Wang J; Yu H; Zhu K
    Bioresour Technol; 2018 Sep; 263():172-179. PubMed ID: 29738980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an aldo-keto reductase from Thermotoga maritima with high thermostability and a broad substrate spectrum.
    Ma YH; Lv DQ; Zhou S; Lai DY; Chen ZM
    Biotechnol Lett; 2013 May; 35(5):757-62. PubMed ID: 23338701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the efficiency of transglycosylation catalyzed by α-galactosidase from Thermotoga maritima by protein engineering.
    Bobrov KS; Borisova AS; Eneyskaya EV; Ivanen DR; Shabalin KA; Kulminskaya AA; Rychkov GN
    Biochemistry (Mosc); 2013 Oct; 78(10):1112-23. PubMed ID: 24237145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling.
    Shang X; Lai R; Song X; Li H; Niu W; Guo J
    Bioconjug Chem; 2017 Nov; 28(11):2859-2864. PubMed ID: 29022697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.