These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 27713915)
1. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations. Luu TP; He Y; Brown S; Nakagome S; Contreras-Vidal JL Int Conf Virtual Rehabil; 2015 Jun; 2015():30-37. PubMed ID: 27713915 [TBL] [Abstract][Full Text] [Related]
2. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
3. A multi-modal modified feedback self-paced BCI to control the gait of an avatar. Alchalabi B; Faubert J; Labbé DR J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832 [TBL] [Abstract][Full Text] [Related]
4. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography. Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622 [TBL] [Abstract][Full Text] [Related]
5. A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface. He Y; Luu TP; Nathan K; Nakagome S; Contreras-Vidal JL Sci Data; 2018 Apr; 5():180074. PubMed ID: 29688217 [TBL] [Abstract][Full Text] [Related]
6. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking. Luu TP; Nakagome S; He Y; Contreras-Vidal JL Sci Rep; 2017 Aug; 7(1):8895. PubMed ID: 28827542 [TBL] [Abstract][Full Text] [Related]
7. Application of hybrid SSVEP + P300 brain computer interface to control avatar movement in mobile virtual reality gaming environment. Kapgate DD Behav Brain Res; 2024 Aug; 472():115154. PubMed ID: 39038519 [TBL] [Abstract][Full Text] [Related]
8. Customizing the human-avatar mapping based on EEG error related potentials. Iwane F; Porssut T; Blanke O; Chavarriaga R; Del R Millán J; Herbelin B; Boulic R J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38386506 [No Abstract] [Full Text] [Related]
9. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy. Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418 [TBL] [Abstract][Full Text] [Related]
10. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
11. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface. Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122 [TBL] [Abstract][Full Text] [Related]
12. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset. Martelli D; Xia B; Prado A; Agrawal SK Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606 [TBL] [Abstract][Full Text] [Related]
13. A Serious Game for the Assessment of Visuomotor Adaptation Capabilities during Locomotion Tasks Employing an Embodied Avatar in Virtual Reality. Suglia V; Brunetti A; Pasquini G; Caputo M; Marvulli TM; Sibilano E; Della Bella S; Carrozza P; Beni C; Naso D; Monaco V; Cristella G; Bevilacqua V; Buongiorno D Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299744 [TBL] [Abstract][Full Text] [Related]
14. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials. Said RR; Heyat MBB; Song K; Tian C; Wu Z Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100 [TBL] [Abstract][Full Text] [Related]
16. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality. Wen D; Liang B; Zhou Y; Chen H; Jung TP IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308 [TBL] [Abstract][Full Text] [Related]
17. Self-paced brain-computer interface control of ambulation in a virtual reality environment. Wang PT; King CE; Chui LA; Do AH; Nenadic Z J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771 [TBL] [Abstract][Full Text] [Related]
18. Operation of a brain-computer interface walking simulator for individuals with spinal cord injury. King CE; Wang PT; Chui LA; Do AH; Nenadic Z J Neuroeng Rehabil; 2013 Jul; 10():77. PubMed ID: 23866985 [TBL] [Abstract][Full Text] [Related]
19. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands. Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839 [TBL] [Abstract][Full Text] [Related]
20. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]