BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 27713915)

  • 21. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.
    García-Cossio E; Severens M; Nienhuis B; Duysens J; Desain P; Keijsers N; Farquhar J
    PLoS One; 2015; 10(12):e0137910. PubMed ID: 26675472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review.
    Wen D; Fan Y; Hsu SH; Xu J; Zhou Y; Tao J; Lan X; Li F
    Ann Phys Rehabil Med; 2021 Jan; 64(1):101404. PubMed ID: 32561504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Mine Works Better": Examining the Influence of Embodiment in Virtual Reality on the Sense of Agency During a Binary Motor Imagery Task With a Brain-Computer Interface.
    Ziadeh H; Gulyas D; Nielsen LD; Lehmann S; Nielsen TB; Kjeldsen TKK; Hougaard BI; Jochumsen M; Knoche H
    Front Psychol; 2021; 12():806424. PubMed ID: 35002899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor adaptation to real-life external environments using immersive virtual reality: A pilot study.
    Paralkar S; Varas-Diaz G; Wang S; Bhatt T
    J Bodyw Mov Ther; 2020 Oct; 24(4):152-158. PubMed ID: 33218504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
    Rutkowski TM
    Front Neurorobot; 2016; 10():20. PubMed ID: 27999538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report.
    Vourvopoulos A; Jorge C; Abreu R; Figueiredo P; Fernandes JC; Bermúdez I Badia S
    Front Hum Neurosci; 2019; 13():244. PubMed ID: 31354460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface.
    Craik A; González-España JJ; Alamir A; Edquilang D; Wong S; Sánchez Rodríguez L; Feng J; Francisco GE; Contreras-Vidal JL
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447780
    [No Abstract]   [Full Text] [Related]  

  • 28. Towards a non-invasive brain-machine interface system to restore gait function in humans.
    Presacco A; Forrester L; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4588-91. PubMed ID: 22255359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An EEG-driven Lower Limb Rehabilitation Training System for Active and Passive Co-stimulation.
    Xin Zhang ; Guanghua Xu ; Jun Xie ; Min Li ; Wei Pei ; Jinhua Zhang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4582-5. PubMed ID: 26737314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics.
    Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH
    PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinematic Gait Adjustments to Virtual Environments on Different Surface Conditions: Do Treadmill and Over-Ground Walking Exhibit Different Adaptations to Passive Virtual Immersion?
    Varas-Diaz G; Paralkar S; Wang S; Bhatt T
    Rehabil Res Pract; 2020; 2020():8901973. PubMed ID: 33414966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations.
    Luu TP; He Y; Nakagome S; Nathan K; Brown S; Gorges J; Contreras-Vidal JL
    Front Hum Neurosci; 2017; 11():320. PubMed ID: 28676750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower-limb kinematic reconstruction during pedaling tasks from EEG signals using Unscented Kalman filter.
    Blanco-Díaz CF; Guerrero-Mendez CD; Delisle-Rodriguez D; de Souza AF; Badue C; Bastos-Filho TF
    Comput Methods Biomech Biomed Engin; 2024 May; 27(7):867-877. PubMed ID: 37129900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes of pelvis control with subacute stroke: A comparison of body-weight- support treadmill training coupled virtual reality system and over-ground training.
    Mao Y; Chen P; Li L; Li L; Huang D
    Technol Health Care; 2015; 23 Suppl 2():S355-64. PubMed ID: 26410502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instantaneous effect of real-time avatar visual feedback on interlimb coordination during walking post-stroke.
    Liu LY; Sangani S; Patterson KK; Fung J; Lamontagne A
    Clin Biomech (Bristol, Avon); 2022 Dec; 100():105821. PubMed ID: 36435074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals.
    Presacco A; Forrester LW; Contreras-Vidal JL
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):212-9. PubMed ID: 22438336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of Neural Plasticity Using a Low-Cost Open Source Brain-Computer Interface and a 3D-Printed Wrist Exoskeleton.
    Jochumsen M; Janjua TAM; Arceo JC; Lauber J; Buessinger ES; Kæseler RL
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.