These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27713936)

  • 1. The reactivity of platinum microelectrodes.
    Jacobse L; Raaijman SJ; Koper MT
    Phys Chem Chem Phys; 2016 Oct; 18(41):28451-28457. PubMed ID: 27713936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of carbon powder paste ultramicroelectrodes as tips for scanning electrochemical microscopy applications.
    Satpati AK; Bard AJ
    Anal Chem; 2012 Nov; 84(21):9498-504. PubMed ID: 23030705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous ultramicroelectrodes for improved electroanalytical measurements.
    Szamocki R; Velichko A; Holzapfel C; Mücklich F; Ravaine S; Garrigue P; Sojic N; Hempelmann R; Kuhn A
    Anal Chem; 2007 Jan; 79(2):533-9. PubMed ID: 17222017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid assessment of platinum disk ultramicroelectrodes' sealing quality by a cyclic voltammetry approach.
    Bodappa N
    Anal Methods; 2020 Jul; 12(27):3545-3550. PubMed ID: 32672251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-walled carbon nanotube network ultramicroelectrodes.
    Dumitrescu I; Unwin PR; Wilson NR; Macpherson JV
    Anal Chem; 2008 May; 80(10):3598-605. PubMed ID: 18410133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes.
    Hu J; Holt KB; Foord JS
    Anal Chem; 2009 Jul; 81(14):5663-70. PubMed ID: 19545137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Koutecký-Levich Method to the Analysis of Steady State Voltammograms with Ultramicroelectrodes.
    Kim J; Bard AJ
    Anal Chem; 2016 Feb; 88(3):1742-7. PubMed ID: 26699141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of carbon, gold, platinum, silver, and mercury ultramicroelectrodes with controlled geometry.
    Danis L; Polcari D; Kwan A; Gateman SM; Mauzeroll J
    Anal Chem; 2015 Mar; 87(5):2565-9. PubMed ID: 25629426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning electrochemical microscopy. 48. Hg/Pt hemispherical ultramicroelectrodes: fabrication and characterization.
    Mauzeroll J; Hueske EA; Bard AJ
    Anal Chem; 2003 Aug; 75(15):3880-9. PubMed ID: 14572057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT-CNT-UMEs).
    Rutkowska A; Bawazeer TM; Macpherson JV; Unwin PR
    Phys Chem Chem Phys; 2011 Mar; 13(12):5223-6. PubMed ID: 21293800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permselectivity, Sensitivity, and Amperometric pH Sensing at Thioctic Acid Monolayer Microelectrodes.
    Cheng Q; Brajter-Toth A
    Anal Chem; 1996 Dec; 68(23):4180-5. PubMed ID: 21619329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes.
    Dasari R; Tai K; Robinson DA; Stevenson KJ
    ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemiluminescence (ECL)-Based Electrochemical Imaging Using a Massive Array of Bipolar Ultramicroelectrodes.
    Anderson TJ; Defnet PA; Zhang B
    Anal Chem; 2020 May; 92(9):6748-6755. PubMed ID: 32237722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated electrochemical biosensor based on algal metabolism for water toxicity analysis.
    Tsopela A; Lale A; Vanhove E; Reynes O; Séguy I; Temple-Boyer P; Juneau P; Izquierdo R; Launay J
    Biosens Bioelectron; 2014 Nov; 61():290-7. PubMed ID: 24906088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes.
    Percival SJ; Bard AJ
    Anal Chem; 2017 Sep; 89(18):9843-9849. PubMed ID: 28825303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated, Massive Electrochemical Arrays of Uniform Ultramicroelectrodes.
    Gunderson C; Zhang B
    J Electroanal Chem (Lausanne); 2016 Nov; 781():174-180. PubMed ID: 28579929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors.
    Wang W; Zhang SH; Li LM; Wang ZL; Cheng JK; Huang WH
    Anal Bioanal Chem; 2009 May; 394(1):17-32. PubMed ID: 19274456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer.
    Alligrant TM; Anderson MJ; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2014 Nov; 30(44):13462-9. PubMed ID: 25360826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media.
    Barton ZJ; Rodríguez-López J
    Anal Chem; 2014 Nov; 86(21):10660-7. PubMed ID: 25310056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.