These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27713976)

  • 1. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation.
    Luo X; Vo T; Jambi F; Pham P; Choy JS
    Lab Chip; 2016 Sep; 16(19):3815-3823. PubMed ID: 27713976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.
    Pham P; Vo T; Luo X
    Lab Chip; 2017 Jan; 17(2):248-255. PubMed ID: 27942655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial chemotaxis in static gradients quantified in a biopolymer membrane-integrated microfluidic platform.
    Hu P; Ly KL; Pham LPH; Pottash AE; Sheridan K; Wu HC; Tsao CY; Quan D; Bentley WE; Rubloff GW; Sintim HO; Luo X
    Lab Chip; 2022 Aug; 22(17):3203-3216. PubMed ID: 35856590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications.
    Mosadegh B; Agarwal M; Torisawa YS; Takayama S
    Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Make it simple: long-term stable gradient generation in a microfluidic microdevice.
    Parittotokkaporn S; Dravid A; Bansal M; Aqrawe Z; Svirskis D; Suresh V; O'Carroll SJ
    Biomed Microdevices; 2019 Jul; 21(3):77. PubMed ID: 31346791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes.
    Fu X; Mavrogiannis N; Ibo M; Crivellari F; Gagnon ZR
    Electrophoresis; 2017 Jan; 38(2):327-334. PubMed ID: 27240889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Print your own membrane: direct rapid prototyping of polydimethylsiloxane.
    Femmer T; Kuehne AJ; Wessling M
    Lab Chip; 2014 Aug; 14(15):2610-3. PubMed ID: 24828586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfibrillated cellulose sheets coating oxygen-permeable PDMS membranes induce rat hepatocytes 3D aggregation into stably-attached 3D hemispheroids.
    Evenou F; Couderc S; Kim B; Fujii T; Sakai Y
    J Biomater Sci Polym Ed; 2011; 22(11):1509-22. PubMed ID: 20626957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method.
    Li Y; Hu X; Li H; Zhang Y; Chen H
    J Phys Condens Matter; 2018 Sep; 30(38):384001. PubMed ID: 30095440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive tuning of bioadhesive properties of polydimethylsiloxane (PDMS) membranes with controlled porosity.
    Jang Y; Lee M; Kim H; Cha C; Jung J; Oh J
    Biofabrication; 2019 May; 11(3):035021. PubMed ID: 31035262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active liquid degassing in microfluidic systems.
    Karlsson JM; Gazin M; Laakso S; Haraldsson T; Malhotra-Kumar S; Mäki M; Goossens H; van der Wijngaart W
    Lab Chip; 2013 Nov; 13(22):4366-73. PubMed ID: 24056885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains.
    Kurian P; Kasibhatla B; Daum J; Burns CA; Moosa M; Rosenthal KS; Kennedy JP
    Biomaterials; 2003 Sep; 24(20):3493-503. PubMed ID: 12809778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-culture of Two Different Cell Lines in a Two-Layer Microfluidic Device.
    Rahman SM; Martin EC; Melvin AT
    Methods Mol Biol; 2022; 2535():33-47. PubMed ID: 35867220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Birefringence of flow-assembled chitosan membranes in microfluidics.
    Li K; Correa SO; Pham P; Raub CB; Luo X
    Biofabrication; 2017 Jun; 9(3):034101. PubMed ID: 28664877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates.
    Ly KL; Raub CB; Luo X
    Mater Adv; 2020 Apr; 1(1):34-44. PubMed ID: 33073238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments.
    Lee J; Kim M
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290975
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.