These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27713977)

  • 1. Microfluidic technique for measuring wax appearance temperature of reservoir fluids.
    Molla S; Magro L; Mostowfi F
    Lab Chip; 2016 Sep; 16(19):3795-3803. PubMed ID: 27713977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium gas-oil ratio measurements using a microfluidic technique.
    Fisher R; Shah MK; Eskin D; Schmidt K; Singh A; Molla S; Mostowfi F
    Lab Chip; 2013 Jul; 13(13):2623-33. PubMed ID: 23657610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online measurements of surface tensions and viscosities based on the hydrodynamics of Taylor flow in a microchannel.
    Sun Y; Guo C; Jiang Y; Wang T; Zhang L
    Rev Sci Instrum; 2016 Nov; 87(11):114901. PubMed ID: 27910588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining phase diagrams of gas-liquid systems using a microfluidic PVT.
    Mostowfi F; Molla S; Tabeling P
    Lab Chip; 2012 Nov; 12(21):4381-7. PubMed ID: 22930353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Optical Methodology Unveils the Impact of a Polymeric Pour-Point Depressant on the Phase Morphology of Waxy Crude Oils.
    Perna I; Ferraro R; Carillo C; Coppola S; Caserta S
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-solid phase transition of n-alkane mixtures: Coarse-grained molecular dynamics simulations and diffusion-ordered spectroscopy nuclear magnetic resonance.
    Shahruddin S; Jiménez-Serratos G; Britovsek GJP; Matar OK; Müller EA
    Sci Rep; 2019 Jan; 9(1):1002. PubMed ID: 30700804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SiO
    López D; Ríos AA; Marín JD; Zabala RD; Rincon JA; Lopera SH; Franco CA; Cortés FB
    ACS Omega; 2023 Sep; 8(37):33289-33298. PubMed ID: 37744863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring and Detection of Paraffin Wax Deposition Process Based on Ultrasonic Analysis.
    Lee DG; Lim JS; Kim YJ; Woo NS; Han SM; Ha J
    J Nanosci Nanotechnol; 2020 Jan; 20(1):168-176. PubMed ID: 31383152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wax Thickness and Distribution Monitoring Inside Petroleum Pipes Based on External Temperature Measurements.
    Ito S; Tanaka Y; Hazuku T; Ihara T; Morita M; Forsdyke I
    ACS Omega; 2021 Mar; 6(8):5310-5317. PubMed ID: 33681571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement.
    Sinha-Ray S; Sinha-Ray S; Sriram H; Yarin AL
    Lab Chip; 2014 Feb; 14(3):494-508. PubMed ID: 24288141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposed measurement method for void fraction in lubricant oil based on the image processing technique.
    Wang J; An Q
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023101. PubMed ID: 18315277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wax Spreading in Paper under Controlled Pressure and Temperature.
    Hong W; Zhou J; Kanungo M; Jia N; Dinsmore AD
    Langmuir; 2018 Jan; 34(1):432-441. PubMed ID: 29239620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles.
    Binks BP; Rocher A
    J Colloid Interface Sci; 2009 Jul; 335(1):94-104. PubMed ID: 19406414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils.
    Nguyen P; Mohaddes D; Riordon J; Fadaei H; Lele P; Sinton D
    Anal Chem; 2015 Mar; 87(6):3160-4. PubMed ID: 25668510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.
    Pullano SA; Mahbub I; Islam SK; Fiorillo AS
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28406447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.