These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27713978)

  • 1. Random design of microfluidics.
    Wang J; Brisk P; Grover WH
    Lab Chip; 2016 Oct; 16(21):4212-4219. PubMed ID: 27713978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks.
    Wang J; Zhang N; Chen J; Su G; Yao H; Ho TY; Sun L
    Lab Chip; 2021 Jan; 21(2):296-309. PubMed ID: 33325947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Objective Design Automation for Microfluidic Capture Chips.
    Chen L; Grover WH; Sridharan M; Brisk P
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):467-479. PubMed ID: 36197858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding the optimal design of a passive microfluidic mixer.
    Wang J; Zhang N; Chen J; Rodgers VGJ; Brisk P; Grover WH
    Lab Chip; 2019 Nov; 19(21):3618-3627. PubMed ID: 31576868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Bifurcation Effect on Various Microfluidic Designs for Blood Separation.
    Hamad EM; Sawalmeh B; Mhawsh AA; Mansour M; Awad M; Al-Halhouli AT; Al-Gharabli SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1097-1100. PubMed ID: 31946085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations.
    Kim C; Lee K; Kim JH; Shin KS; Lee KJ; Kim TS; Kang JY
    Lab Chip; 2008 Mar; 8(3):473-9. PubMed ID: 18305867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.
    Waldbaur A; Kittelmann J; Radtke CP; Hubbuch J; Rapp BE
    Lab Chip; 2013 Jun; 13(12):2337-43. PubMed ID: 23639992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOPSA: A microfluidics-optimized particle simulation algorithm.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    Biomicrofluidics; 2017 May; 11(3):034121. PubMed ID: 28713477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis.
    Xie Z; Pu H; Sun DW
    Compr Rev Food Sci Food Saf; 2021 Jul; 20(4):3818-3837. PubMed ID: 34056852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system.
    Buhlmann C; Preckel T; Chan S; Luedke G; Valer M
    J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips.
    Iranmanesh I; Ohlin M; Ramachandraiah H; Ye S; Russom A; Wiklund M
    Biomed Microdevices; 2016 Aug; 18(4):71. PubMed ID: 27444649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices.
    Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S
    Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.