BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27713982)

  • 21. Open-channel, water-in-oil emulsification in paper-based microfluidic devices.
    Li C; Boban M; Tuteja A
    Lab Chip; 2017 Apr; 17(8):1436-1441. PubMed ID: 28322402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet microfluidics with a nanoemulsion continuous phase.
    Gu T; Yeap EW; Somasundar A; Chen R; Hatton TA; Khan SA
    Lab Chip; 2016 Jul; 16(14):2694-700. PubMed ID: 27306833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets.
    Gong T; Shen J; Hu Z; Marquez M; Cheng Z
    Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional hydrogel structures for autonomous flow control inside microfluidic channels.
    Beebe DJ; Moore JS; Bauer JM; Yu Q; Liu RH; Devadoss C; Jo BH
    Nature; 2000 Apr; 404(6778):588-90. PubMed ID: 10766238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogel-Based BioMEMS platforms for smart drug delivery.
    Ziaie B; Siegel RA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2670. PubMed ID: 17511110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoswitchable electrokinetic ion-enrichment/elution based on a poly(N-isopropylacrylamide) hydrogel plug in a microchannel.
    Li Z; He Q; Ma D; Chen H; Soper SA
    Anal Chem; 2010 Dec; 82(24):10030-6. PubMed ID: 21105674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of a novel composite PNIPAAm hydrogel for controlled drug release.
    Xu XD; Wei H; Zhang XZ; Cheng SX; Zhuo RX
    J Biomed Mater Res A; 2007 May; 81(2):418-26. PubMed ID: 17117471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
    Sugaya S; Yamada M; Hori A; Seki M
    Biomicrofluidics; 2013; 7(5):54120. PubMed ID: 24396529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Programming of Compositional Hydrogel Landscapes.
    Allazetta S; Negro A; Lutolf MP
    Macromol Rapid Commun; 2017 Aug; 38(15):. PubMed ID: 28605081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics-assisted diffusion self-assembly: toward the control of the shape and size of pectin hydrogel microparticles.
    Marquis M; Davy J; Fang A; Renard D
    Biomacromolecules; 2014 May; 15(5):1568-78. PubMed ID: 24673589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application.
    Kwon GH; Choi YY; Park JY; Woo DH; Lee KB; Kim JH; Lee SH
    Lab Chip; 2010 Jun; 10(12):1604-10. PubMed ID: 20376390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroporous Poly(N-isopropylacrylamide) hydrogels with adjustable size "cut-off" for the efficient and reversible immobilization of biomacromolecules.
    Fänger C; Wack H; Ulbricht M
    Macromol Biosci; 2006 Jun; 6(6):393-402. PubMed ID: 16761272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogel Patterns in Microfluidic Devices by Do-It-Yourself UV-Photolithography Suitable for Very Large-Scale Integration.
    Beck A; Obst F; Busek M; Grünzner S; Mehner PJ; Paschew G; Appelhans D; Voit B; Richter A
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32370256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling ionic hydrogels swelling: characterization of the non-steady state.
    Traitel T; Kost J; Lapidot SA
    Biotechnol Bioeng; 2003 Oct; 84(1):20-8. PubMed ID: 12910539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.