These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27713982)

  • 61. Polymersomes containing a hydrogel network for high stability and controlled release.
    Kim SH; Kim JW; Kim DH; Han SH; Weitz DA
    Small; 2013 Jan; 9(1):124-31. PubMed ID: 22961742
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Floating Hydrogel Beads Made by Droplet Impact.
    Chu Y; Liao S; Wang Q; Ma Y; Wang Y
    Small; 2022 Aug; 18(33):e2203355. PubMed ID: 35871504
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Controlled generation of monodisperse discoid droplets using microchannel arrays.
    Kobayashi I; Uemura K; Nakajima M
    Langmuir; 2006 Dec; 22(26):10893-7. PubMed ID: 17154559
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Manipulation of microfluidic droplets by electrorheological fluid.
    Zhang M; Gong X; Wen W
    Electrophoresis; 2009 Sep; 30(18):3116-23. PubMed ID: 19722203
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Controlling thread formation during tipstreaming through an active feedback control loop.
    Moyle TM; Walker LM; Anna SL
    Lab Chip; 2013 Dec; 13(23):4534-41. PubMed ID: 24100760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs.
    Sousa RG; Prior-Cabanillas A; Quijada-Garrido I; Barrales-Rienda JM
    J Control Release; 2005 Feb; 102(3):595-606. PubMed ID: 15681082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics.
    Funfschilling D; Debas H; Li HZ; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015301. PubMed ID: 19658759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Droplet confinement and leakage: Causes, underlying effects, and amelioration strategies.
    Debon AP; Wootton RC; Elvira KS
    Biomicrofluidics; 2015 Mar; 9(2):024119. PubMed ID: 26015831
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility.
    Elvira KS; Leatherbarrow R; Edel J; Demello A
    Biomicrofluidics; 2012 Jun; 6(2):22003-2200310. PubMed ID: 22655007
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers.
    Kurnia JC; Birgersson E; Mujumdar AS
    J Funct Biomater; 2011 Aug; 2(3):195-212. PubMed ID: 24956303
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells.
    Bayoumi M; Bayley H; Maglia G; Sapra KT
    Sci Rep; 2017 Apr; 7():45167. PubMed ID: 28367984
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A smart multi-pipette for hand-held operation of microfluidic devices.
    Kim B; Hahn YK; You D; Oh S; Choi S
    Analyst; 2016 Oct; 141(20):5753-5758. PubMed ID: 27478886
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Morphological Manipulation of DNA Gel Microbeads with Biomolecular Stimuli.
    Okumura S; Nixon Hapsianto B; Lobato-Dauzier N; Ohno Y; Benner S; Torii Y; Tanabe Y; Takada K; Baccouche A; Shinohara M; Kim SH; Fujii T; Genot A
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33499417
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks.
    Grimmer A; Chen X; Hamidović M; Haselmayr W; Ren CL; Wille R
    RSC Adv; 2018 Oct; 8(60):34733-34742. PubMed ID: 35548635
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Linear shrinkage of hydrogel coatings exposed to flow: interplay between dissolution of water and advective transport.
    Baumli P; Hauer L; Lorusso E; Aghili AS; Hegner KI; D'Acunzi M; Gutmann JS; Dünweg B; Vollmer D
    Soft Matter; 2022 Jan; 18(2):365-371. PubMed ID: 34889343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.