These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27714000)

  • 61. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids.
    Komaiko J; Sastrosubroto A; McClements DJ
    J Agric Food Chem; 2015 Nov; 63(45):10078-88. PubMed ID: 26528859
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of the density difference between water and oil on stabilization of powdered oil-in-water emulsions.
    Murakami R; Moriyama H; Noguchi T; Yamamoto M; Binks BP
    Langmuir; 2014 Jan; 30(2):496-500. PubMed ID: 24359471
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.
    Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP
    J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Confinement and viscosity ratio effect on droplet break-up in a concentrated emulsion flowing through a narrow constriction.
    Gai Y; Khor JW; Tang SK
    Lab Chip; 2016 Aug; 16(16):3058-64. PubMed ID: 27194099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Jun; 21(13):5722-30. PubMed ID: 15952815
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A microfluidic method to study demulsification kinetics.
    Krebs T; Schroen K; Boom R
    Lab Chip; 2012 Mar; 12(6):1060-70. PubMed ID: 22215134
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Particle-Stabilized Powdered Water-in-Oil Emulsions.
    Binks BP; Tyowua AT
    Langmuir; 2016 Apr; 32(13):3110-5. PubMed ID: 27002604
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant.
    Cui ZG; Yang LL; Cui YZ; Binks BP
    Langmuir; 2010 Apr; 26(7):4717-24. PubMed ID: 19950938
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Long-term stability of crystal-stabilized water-in-oil emulsions.
    Ghosh S; Pradhan M; Patel T; Haj-Shafiei S; Rousseau D
    J Colloid Interface Sci; 2015 Dec; 460():247-57. PubMed ID: 26343977
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets.
    Nallamilli T; Binks BP; Mani E; Basavaraj MG
    Langmuir; 2015 Oct; 31(41):11200-8. PubMed ID: 26411316
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of sugars on the formation of nanometer-sized droplets of vegetable oil by an isothermal low-energy emulsification method.
    Ikeda S; Miyanoshita M; Gohtani S
    J Food Sci; 2013 Jul; 78(7):E1017-21. PubMed ID: 23701718
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conditions for equilibrium solid-stabilized emulsions.
    Kraft DJ; de Folter JW; Luigjes B; Castillo SI; Sacanna S; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Aug; 114(32):10347-56. PubMed ID: 20701369
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phase behavior and nano-emulsion formation by the phase inversion temperature method.
    Izquierdo P; Esquena J; Tadros TF; Dederen JC; Feng J; Garcia-Celma MJ; Azemar N; Solans C
    Langmuir; 2004 Aug; 20(16):6594-8. PubMed ID: 15274560
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phase inversion emulsification: Current understanding and applications.
    Perazzo A; Preziosi V; Guido S
    Adv Colloid Interface Sci; 2015 Aug; 222():581-99. PubMed ID: 25632889
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions.
    Machado AH; Lundberg D; Ribeiro AJ; Veiga FJ; Lindman B; Miguel MG; Olsson U
    Langmuir; 2012 Mar; 28(9):4131-41. PubMed ID: 22296569
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiple emulsion stability: pressure balance and interfacial film strength.
    Jiao J; Rhodes DG; Burgess DJ
    J Colloid Interface Sci; 2002 Jun; 250(2):444-50. PubMed ID: 16290683
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of fluorocarbon-in-water emulsions with added triglyceride.
    Weers JG; Arlauskas RA; Tarara TE; Pelura TJ
    Langmuir; 2004 Aug; 20(18):7430-5. PubMed ID: 15323486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.