BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27714053)

  • 1. Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells.
    Kinnear C; Rodriguez-Lorenzo L; Clift MJ; Goris B; Bals S; Rothen-Rutishauser B; Petri-Fink A
    Nanoscale; 2016 Sep; 8(36):16416-16426. PubMed ID: 27714053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
    Agarwal R; Singh V; Jurney P; Shi L; Sreenivasan SV; Roy K
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17247-52. PubMed ID: 24101456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles.
    Jiang Y; Huo S; Mizuhara T; Das R; Lee YW; Hou S; Moyano DF; Duncan B; Liang XJ; Rotello VM
    ACS Nano; 2015 Oct; 9(10):9986-93. PubMed ID: 26435075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.
    Favi PM; Valencia MM; Elliott PR; Restrepo A; Gao M; Huang H; Pavon JJ; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3940-55. PubMed ID: 26053238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent endocytosis of single gold nanoparticles.
    Shan Y; Ma S; Nie L; Shang X; Hao X; Tang Z; Wang H
    Chem Commun (Camb); 2011 Jul; 47(28):8091-3. PubMed ID: 21687845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.
    Yang H; Chen Z; Zhang L; Yung WY; Leung KC; Chan HY; Choi CH
    Small; 2016 Oct; 12(37):5178-5189. PubMed ID: 27442290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.
    Wang T; Wang L; Li X; Hu X; Han Y; Luo Y; Wang Z; Li Q; Aldalbahi A; Wang L; Song S; Fan C; Zhao Y; Wang M; Chen N
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18619-18625. PubMed ID: 28497682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice.
    Lin Z; Monteiro-Riviere NA; Riviere JE
    Nanotoxicology; 2016; 10(2):162-72. PubMed ID: 25961857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of nanorods by density gradient centrifugation.
    Xiong B; Cheng J; Qiao Y; Zhou R; He Y; Yeung ES
    J Chromatogr A; 2011 Jun; 1218(25):3823-9. PubMed ID: 21571285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection.
    Yan P; Wang R; Zhao N; Zhao H; Chen DF; Xu FJ
    Nanoscale; 2015 Mar; 7(12):5281-91. PubMed ID: 25721660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells.
    Sangabathuni S; Vasudeva Murthy R; Chaudhary PM; Surve M; Banerjee A; Kikkeri R
    Nanoscale; 2016 Jul; 8(25):12729-35. PubMed ID: 27279022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental mercury vapor interaction with individual gold nanorods.
    James JZ; Lucas D; Koshland CP
    Analyst; 2013 Apr; 138(8):2323-8. PubMed ID: 23446550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.
    Chithrani BD; Chan WC
    Nano Lett; 2007 Jun; 7(6):1542-50. PubMed ID: 17465586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.
    Alkilany AM; Nagaria PK; Hexel CR; Shaw TJ; Murphy CJ; Wyatt MD
    Small; 2009 Mar; 5(6):701-8. PubMed ID: 19226599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures.
    Wang YF; Zhang Q; Tian F; Wang H; Wang Y; Ma X; Huang Q; Cai M; Ji Y; Wu X; Gan Y; Yan Y; Dawson KA; Guo S; Zhang J; Shi X; Shan Y; Liang XJ
    ACS Nano; 2022 Mar; 16(3):4059-4071. PubMed ID: 35191668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored Au nanorods: optimizing functionality, controlling the aspect ratio and increasing biocompatibility.
    Cai X; Wang CL; Chen HH; Chien CC; Lai SF; Chen YY; Hua TE; Kempson IM; Hwu Y; Yang CS; Margaritondo G
    Nanotechnology; 2010 Aug; 21(33):335604. PubMed ID: 20657043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles.
    Nambara K; Niikura K; Mitomo H; Ninomiya T; Takeuchi C; Wei J; Matsuo Y; Ijiro K
    Langmuir; 2016 Nov; 32(47):12559-12567. PubMed ID: 27653187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding nanoparticle cellular entry: A physicochemical perspective.
    Beddoes CM; Case CP; Briscoe WH
    Adv Colloid Interface Sci; 2015 Apr; 218():48-68. PubMed ID: 25708746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.