These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27714071)

  • 21. Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families.
    Dimitriou PS; Denesyuk A; Takahashi S; Yamashita S; Johnson MS; Nakayama T; Denessiouk K
    Proteins; 2017 Oct; 85(10):1845-1855. PubMed ID: 28643343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure.
    Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB
    Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01.
    Jun SY; Fushinobu S; Nojiri H; Omori T; Shoun H; Wakagi T
    Biochim Biophys Acta; 2006 Jul; 1764(7):1159-66. PubMed ID: 16844437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes.
    Chen X; Wang Y; Wang P
    Langmuir; 2015; 31(1):397-403. PubMed ID: 25521207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes.
    Walsh TR; Tomasio SM
    Mol Biosyst; 2010 Sep; 6(9):1707-18. PubMed ID: 20539883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors.
    Cabral MF; Sgobbi LF; Kataoka EM; Machado SA
    Colloids Surf B Biointerfaces; 2013 Nov; 111():30-5. PubMed ID: 23777789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis.
    Guo Y; Zhao P; Zhang W; Li X; Chen X; Chen D
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1336-43. PubMed ID: 27010688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational, electrochemical, and spectroscopic, studies of acetycholinesterase covalently attached to carbon nanotubes.
    Cabral MF; Barrios JD; Kataoka EM; Machado SA; Carrilho E; Garcia CD; Ayon AA
    Colloids Surf B Biointerfaces; 2013 Mar; 103():624-9. PubMed ID: 23274156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conservation of average hydrophobicity of apolar aminoacids in polypeptides constituting same glycosyl hydrolase sub-family enzymes.
    Sengupta S
    Protein Pept Lett; 2007; 14(9):843-5. PubMed ID: 18045223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of site-directed mutagenesis on soluble expression and specific activity of amide hydrolase DamH].
    Wang F; Li Z; Zhou J; Cui Z
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1584-92. PubMed ID: 27101701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides.
    Ren SF; Guo YL
    J Am Soc Mass Spectrom; 2006 Jul; 17(7):1023-1027. PubMed ID: 16713290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic, theoretical, and biological investigation of an enzyme mimic model.
    Gülseren G
    Turk J Chem; 2021; 45(4):1270-1278. PubMed ID: 34707450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.
    Cang-Rong JT; Pastorin G
    Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct substrate selectivity of a metabolic hydrolase from Mycobacterium tuberculosis.
    Lukowski JK; Savas CP; Gehring AM; McKary MG; Adkins CT; Lavis LD; Hoops GC; Johnson RJ
    Biochemistry; 2014 Dec; 53(47):7386-95. PubMed ID: 25354081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a novel composite material with carbon nanotubes assisted by self-assembled peptides designed in conjunction with β-sheet formation.
    Hashida Y; Umeyama T; Mihara J; Imahori H; Tsujimoto M; Isoda S; Takano M; Hashida M
    J Pharm Sci; 2012 Sep; 101(9):3398-412. PubMed ID: 22488097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional and Catalytic Characterization of the Detoxifying Enzyme Haloalkane Dehalogenase from Rhizobium leguminosarum.
    Georgakis N; Chronopoulou E; Gad MA; Skliros D; Efrose R; Flemetakis E; Labrou NE
    Protein Pept Lett; 2017; 24(7):599-608. PubMed ID: 28641560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical sensing based on redox mediation at carbon nanotubes.
    Zhang M; Gorski W
    Anal Chem; 2005 Jul; 77(13):3960-5. PubMed ID: 15987097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide encapsulation regulated by the geometry of carbon nanotubes.
    Zhang ZS; Kang Y; Liang LJ; Liu YC; Wu T; Wang Q
    Biomaterials; 2014 Feb; 35(5):1771-8. PubMed ID: 24290699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.