These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 27714087)

  • 21. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives.
    Zhang H; Eshetu GG; Judez X; Li C; Rodriguez-Martínez LM; Armand M
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15002-15027. PubMed ID: 29442418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.
    Borchardt L; Oschatz M; Kaskel S
    Chemistry; 2016 May; 22(22):7324-51. PubMed ID: 27001631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
    Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H
    ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes.
    Chiu KC; Chang JK; Su YS
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Integrated Strategy towards Enhanced Performance of the Lithium-Sulfur Battery and its Fading Mechanism.
    Huang X; Luo B; Knibbe R; Hu H; Lyu M; Xiao M; Sun D; Wang S; Wang L
    Chemistry; 2018 Dec; 24(69):18544-18550. PubMed ID: 30265420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solid-Electrolyte-Interphase, Current Collectors, Binders, and Separators.
    Ni Q; Kim B; Wu C; Kang K
    Adv Mater; 2022 May; 34(20):e2108206. PubMed ID: 34905643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries.
    Patrike A; Yadav P; Shelke V; Shelke M
    ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Progress on Zinc-Ion Rechargeable Batteries.
    Xu W; Wang Y
    Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries.
    Huang Z; Sun W; Sun Z; Ding R; Wang X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced Current Collector Materials for High-Performance Lithium Metal Anodes.
    Li D; Hu H; Chen B; Lai WY
    Small; 2022 Jun; 18(24):e2200010. PubMed ID: 35445540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemically Stable Rechargeable Lithium-Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film.
    Chiu LL; Chung SH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.