These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 27714104)
1. A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment. Muoth C; Wichser A; Monopoli M; Correia M; Ehrlich N; Loeschner K; Gallud A; Kucki M; Diener L; Manser P; Jochum W; Wick P; Buerki-Thurnherr T Nanoscale; 2016 Oct; 8(39):17322-17332. PubMed ID: 27714104 [TBL] [Abstract][Full Text] [Related]
2. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Aengenheister L; Dugershaw BB; Manser P; Wichser A; Schoenenberger R; Wick P; Hesler M; Kohl Y; Straskraba S; Suter MJ; Buerki-Thurnherr T Eur J Pharm Biopharm; 2019 Sep; 142():488-497. PubMed ID: 31330257 [TBL] [Abstract][Full Text] [Related]
3. Assessment of nanotoxicity in a human placenta-on-a-chip from trophoblast stem cells. Cao R; Guo Y; Liu J; Guo Y; Li X; Xie F; Wang Y; Qin J Ecotoxicol Environ Saf; 2024 Oct; 285():117051. PubMed ID: 39288735 [TBL] [Abstract][Full Text] [Related]
4. Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Juch H; Nikitina L; Reimann S; Gauster M; Dohr G; Obermayer-Pietsch B; Hoch D; Kornmueller K; Haag R Nanotoxicology; 2018 Mar; 12(2):90-103. PubMed ID: 29334310 [TBL] [Abstract][Full Text] [Related]
5. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Aengenheister L; Keevend K; Muoth C; Schönenberger R; Diener L; Wick P; Buerki-Thurnherr T Sci Rep; 2018 Mar; 8(1):5388. PubMed ID: 29599470 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models. Aengenheister L; Dietrich D; Sadeghpour A; Manser P; Diener L; Wichser A; Karst U; Wick P; Buerki-Thurnherr T J Nanobiotechnology; 2018 Oct; 16(1):79. PubMed ID: 30309365 [TBL] [Abstract][Full Text] [Related]
7. Dietary Antioxidant Curcumin Mitigates CuO Nanoparticle-Induced Cytotoxicity through the Oxidative Stress Pathway in Human Placental Cells. Ahamed M; Lateef R; Akhtar MJ; Rajanahalli P Molecules; 2022 Oct; 27(21):. PubMed ID: 36364205 [TBL] [Abstract][Full Text] [Related]
8. Placental-derived mesenchyme influences chorionic gonadotropin and progesterone secretion of human embryonic stem cell-derived trophoblasts. Giakoumopoulos M; Siegfried LM; Dambaeva SV; Garthwaite MA; Glennon MC; Golos TG Reprod Sci; 2010 Sep; 17(9):798-808. PubMed ID: 20601539 [TBL] [Abstract][Full Text] [Related]
9. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Yin F; Zhu Y; Zhang M; Yu H; Chen W; Qin J Toxicol In Vitro; 2019 Feb; 54():105-113. PubMed ID: 30248392 [TBL] [Abstract][Full Text] [Related]
10. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Rollerova E; Tulinska J; Liskova A; Kuricova M; Kovriznych J; Mlynarcikova A; Kiss A; Scsukova S Endocr Regul; 2015 Apr; 49(2):97-112. PubMed ID: 25960011 [TBL] [Abstract][Full Text] [Related]
11. A microphysiological model of the human placental barrier. Blundell C; Tess ER; Schanzer AS; Coutifaris C; Su EJ; Parry S; Huh D Lab Chip; 2016 Aug; 16(16):3065-73. PubMed ID: 27229450 [TBL] [Abstract][Full Text] [Related]
12. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Susewind J; de Souza Carvalho-Wodarz C; Repnik U; Collnot EM; Schneider-Daum N; Griffiths GW; Lehr CM Nanotoxicology; 2016; 10(1):53-62. PubMed ID: 25738417 [TBL] [Abstract][Full Text] [Related]
13. A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells. Li Z; Kurosawa O; Iwata H Tissue Eng Part A; 2020 Jul; 26(13-14):780-791. PubMed ID: 32323636 [TBL] [Abstract][Full Text] [Related]
14. Maternal exposure to nano-titanium dioxide impedes fetal development via endothelial-to-mesenchymal transition in the placental labyrinth in mice. Li X; Luo Y; Ji D; Zhang Z; Luo S; Ma Y; Cao W; Cao C; Saw PE; Chen H; Wei Y Part Fibre Toxicol; 2023 Dec; 20(1):48. PubMed ID: 38072983 [TBL] [Abstract][Full Text] [Related]
15. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842 [TBL] [Abstract][Full Text] [Related]
16. Purified first and third trimester placental trophoblasts differ in in vitro hormone secretion. Kato Y; Braunstein GD J Clin Endocrinol Metab; 1990 Apr; 70(4):1187-92. PubMed ID: 2318939 [TBL] [Abstract][Full Text] [Related]
17. Estrogen synthetase (aromatase) activity in primary culture of human term placental cells: effects of cell preparation, growth medium, and serum on adenosine 3',5'-monophosphate response. Lobo JO; Bellino FL J Clin Endocrinol Metab; 1989 Oct; 69(4):868-74. PubMed ID: 2550508 [TBL] [Abstract][Full Text] [Related]
18. Exposure to metal oxide nanoparticles in physiological fluid induced synergistic biological effects in a keratinocyte model. Cathe DS; Whitaker JN; Breitner EK; Comfort KK Toxicol Lett; 2017 Feb; 268():1-7. PubMed ID: 28093221 [TBL] [Abstract][Full Text] [Related]
19. Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Belkacemi L; Gariépy G; Mounier C; Simoneau L; Lafond J Biol Reprod; 2003 Jun; 68(6):1943-50. PubMed ID: 12606474 [TBL] [Abstract][Full Text] [Related]
20. Dexamethasone stimulates placental system A transport and trophoblast differentiation in term villous explants. Audette MC; Greenwood SL; Sibley CP; Jones CJ; Challis JR; Matthews SG; Jones RL Placenta; 2010 Feb; 31(2):97-105. PubMed ID: 20045184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]