These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27714105)

  • 21. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Electrodes for K-Ion Batteries.
    Jian Z; Luo W; Ji X
    J Am Chem Soc; 2015 Sep; 137(36):11566-9. PubMed ID: 26333059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes.
    Yamanaka T; Nakagawa H; Tsubouchi S; Domi Y; Doi T; Abe T; Ogumi Z
    ChemSusChem; 2017 Mar; 10(5):855-861. PubMed ID: 27925412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General scalable strategy toward heterogeneously doped hierarchical porous graphitic carbon bubbles for lithium-ion battery anodes.
    Song H; Yang G; Wang C
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21661-8. PubMed ID: 25408550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode.
    Huang J; Yang K; Zhang Z; Yang L; Hirano SI
    Chem Commun (Camb); 2017 Jul; 53(55):7800-7803. PubMed ID: 28653063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries.
    Sun J; Lee HW; Pasta M; Yuan H; Zheng G; Sun Y; Li Y; Cui Y
    Nat Nanotechnol; 2015 Nov; 10(11):980-5. PubMed ID: 26344183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.
    Das S; Swain D; Araujo RB; Shi S; Ahuja R; Row TNG; Bhattacharyya AJ
    Chem Asian J; 2018 Feb; 13(3):299-310. PubMed ID: 29280560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defect evolution in graphene upon electrochemical lithiation.
    Jaber-Ansari L; Puntambekar KP; Tavassol H; Yildirim H; Kinaci A; Kumar R; Saldaña SJ; Gewirth AA; Greeley JP; Chan MK; Hersam MC
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17626-36. PubMed ID: 25265029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries.
    Long W; Fang B; Ignaszak A; Wu Z; Wang YJ; Wilkinson D
    Chem Soc Rev; 2017 Nov; 46(23):7176-7190. PubMed ID: 29075713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent research progress in non-aqueous potassium-ion batteries.
    Zou X; Xiong P; Zhao J; Hu J; Liu Z; Xu Y
    Phys Chem Chem Phys; 2017 Oct; 19(39):26495-26506. PubMed ID: 28951925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dilatometric and mass spectrometric investigations on lithium ion battery anode materials.
    Wagner MR; Raimann PR; Trifonova A; Möller KC; Besenhard JO; Winter M
    Anal Bioanal Chem; 2004 May; 379(2):272-6. PubMed ID: 15042268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.
    An T; Wang Y; Tang J; Wang Y; Zhang L; Zheng G
    J Colloid Interface Sci; 2015 May; 445():320-325. PubMed ID: 25638743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MgO-decorated few-layered graphene as an anode for li-ion batteries.
    Petnikota S; Rotte NK; Reddy MV; Srikanth VV; Chowdari BV
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2301-9. PubMed ID: 25559260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nernstian Li
    Hui J; Nijamudheen A; Sarbapalli D; Xia C; Qu Z; Mendoza-Cortes JL; Rodríguez-López J
    Chem Sci; 2020 Oct; 12(2):559-568. PubMed ID: 34163786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS(2) /graphene composites.
    Wang YX; Chou SL; Wexler D; Liu HK; Dou SX
    Chemistry; 2014 Jul; 20(31):9607-12. PubMed ID: 24988995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-Induced Growth of a Highly Oriented Mesoporous Graphitic Carbon Nanospring for Fast Potassium-Ion Adsorption/Intercalation Storage.
    Qian Y; Jiang S; Li Y; Yi Z; Zhou J; Tian J; Lin N; Qian Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):18108-18115. PubMed ID: 31593347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.