These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27714222)

  • 1. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.
    Menon BR; Latham J; Dunstan MS; Brandenburger E; Klemstein U; Leys D; Karthikeyan C; Greaney MF; Shepherd SA; Micklefield J
    Org Biomol Chem; 2016 Oct; 14(39):9354-9361. PubMed ID: 27714222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic Halogenation by Using Bifunctional Flavin Reductase-Halogenase Fusion Enzymes.
    Andorfer MC; Belsare KD; Girlich AM; Lewis JC
    Chembiochem; 2017 Nov; 18(21):2099-2103. PubMed ID: 28879681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional divergence between evolutionary-related LuxG and Fre oxidoreductases of luminous bacteria.
    Deeva AA; Zykova EA; Nemtseva EV; Kratasyuk VA
    Proteins; 2019 Sep; 87(9):723-729. PubMed ID: 30985024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds.
    Sana B; Ho T; Kannan S; Ke D; Li EHY; Seayad J; Verma CS; Duong HA; Ghadessy FJ
    Chembiochem; 2021 Sep; 22(18):2791-2798. PubMed ID: 34240527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy.
    Schroeder L; Diepold N; Gäfe S; Niemann HH; Kottke T
    J Biol Chem; 2024 Apr; 300(4):107210. PubMed ID: 38519030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Halogenase Enzymes for Use in Synthesis.
    Latham J; Brandenburger E; Shepherd SA; Menon BRK; Micklefield J
    Chem Rev; 2018 Jan; 118(1):232-269. PubMed ID: 28466644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes.
    Shepherd SA; Karthikeyan C; Latham J; Struck AW; Thompson ML; Menon BRK; Styles MQ; Levy C; Leys D; Micklefield J
    Chem Sci; 2015 Jun; 6(6):3454-3460. PubMed ID: 29511510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual substrate and halide versatility of phenolic halogenase PltM.
    Mori S; Pang AH; Thamban Chandrika N; Garneau-Tsodikova S; Tsodikov OV
    Nat Commun; 2019 Mar; 10(1):1255. PubMed ID: 30890712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lichen Flavin-Dependent Halogenase, DnHal: Identification, Heterologous Expression and Functional Characterization.
    Hasan NS; Ling JG; Bakar MFA; Seman WMKW; Murad AMA; Bakar FDA; Khalid RM
    Appl Biochem Biotechnol; 2023 Nov; 195(11):6708-6736. PubMed ID: 36913095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix.
    Musila JM; Ellis HR
    Biochemistry; 2016 Nov; 55(46):6389-6394. PubMed ID: 27806563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled.
    Moritzer AC; Niemann HH
    Protein Sci; 2019 Dec; 28(12):2112-2118. PubMed ID: 31589794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
    Filisetti L; Fontecave M; Niviere V
    J Biol Chem; 2003 Jan; 278(1):296-303. PubMed ID: 12417584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.