These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27714335)

  • 1. Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction.
    Clavería V; Aouane O; Thiébaud M; Abkarian M; Coupier G; Misbah C; John T; Wagner C
    Soft Matter; 2016 Oct; 12(39):8235-8245. PubMed ID: 27714335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow.
    Shen Z; Fischer TM; Farutin A; Vlahovska PM; Harting J; Misbah C
    Phys Rev Lett; 2018 Jun; 120(26):268102. PubMed ID: 30004752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic interactions between red blood cells and drug carriers by image analysis techniques.
    D'Apolito R; Taraballi F; Minardi S; Liu X; Caserta S; Cevenini A; Tasciotti E; Tomaiuolo G; Guido S
    Med Eng Phys; 2016 Jan; 38(1):17-23. PubMed ID: 26651215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping.
    Dasanna AK; Fedosov DA; Gompper G; Schwarz US
    Soft Matter; 2019 Jul; 15(27):5511-5520. PubMed ID: 31241632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of red blood cell shapes in flow using outlier tolerant machine learning.
    Kihm A; Kaestner L; Wagner C; Quint S
    PLoS Comput Biol; 2018 Jun; 14(6):e1006278. PubMed ID: 29906283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-driven occlusive flow of a confined red blood cell.
    Savin T; Bandi MM; Mahadevan L
    Soft Matter; 2016 Jan; 12(2):562-73. PubMed ID: 26497051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
    Fedosov DA; Peltomäki M; Gompper G
    Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056322. PubMed ID: 22181513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The buckling instability of aggregating red blood cells.
    Flormann D; Aouane O; Kaestner L; Ruloff C; Misbah C; Podgorski T; Wagner C
    Sci Rep; 2017 Aug; 7(1):7928. PubMed ID: 28801570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interaction between a platelet and an erythrocyte: effect of erythrocyte deformability, dynamics, and wall proximity.
    Vahidkhah K; Diamond SL; Bagchi P
    J Biomech Eng; 2013 May; 135(5):51002. PubMed ID: 24231958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable adhesion of different red blood cell products to activated vascular endothelium under flow conditions.
    Anniss AM; Sparrow RL
    Am J Hematol; 2007 Jun; 82(6):439-45. PubMed ID: 17133424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape transitions of fluid vesicles and red blood cells in capillary flows.
    Noguchi H; Gompper G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14159-64. PubMed ID: 16186506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cohesiveness and hydrodynamic properties of young drinking water biofilms.
    Abe Y; Skali-Lami S; Block JC; Francius G
    Water Res; 2012 Mar; 46(4):1155-66. PubMed ID: 22221338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.