These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 27714346)
1. Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Silva ER; Cooney G; Hamley IW; Alves WA; Lee S; O'Connor BF; Reza M; Ruokolainen J; Walls D Soft Matter; 2016 Nov; 12(45):9158-9169. PubMed ID: 27714346 [TBL] [Abstract][Full Text] [Related]
2. An insight into the gene delivery mechanism of the arginine peptide system: role of the peptide/DNA complex size. Choi HS; Kim HH; Yang JM; Shin S Biochim Biophys Acta; 2006 Nov; 1760(11):1604-12. PubMed ID: 17064849 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. da Silva ER; Walter MN; Reza M; Castelletto V; Ruokolainen J; Connon CJ; Alves WA; Hamley IW Biomacromolecules; 2015 Oct; 16(10):3180-90. PubMed ID: 26348849 [TBL] [Abstract][Full Text] [Related]
4. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Mann A; Thakur G; Shukla V; Singh AK; Khanduri R; Naik R; Jiang Y; Kalra N; Dwarakanath BS; Langel U; Ganguli M Mol Pharm; 2011 Oct; 8(5):1729-41. PubMed ID: 21780847 [TBL] [Abstract][Full Text] [Related]
6. Exogenous and cell surface glycosaminoglycans alter DNA delivery efficiency of arginine and lysine homopeptides in distinctly different ways. Naik RJ; Chandra P; Mann A; Ganguli M J Biol Chem; 2011 May; 286(21):18982-93. PubMed ID: 21471199 [TBL] [Abstract][Full Text] [Related]
7. Amphiphilic peptides with arginines and valines for the delivery of plasmid DNA. Ryu DW; Kim HA; Song H; Kim S; Lee M J Cell Biochem; 2011 May; 112(5):1458-66. PubMed ID: 21322000 [TBL] [Abstract][Full Text] [Related]
8. Effective gene delivery into human stem cells with a cell-targeting Peptide-modified bioreducible polymer. Beloor J; Ramakrishna S; Nam K; Seon Choi C; Kim J; Kim SH; Cho HJ; Shin H; Kim H; Kim SW; Lee SK; Kumar P Small; 2015 May; 11(17):2069-79. PubMed ID: 25515928 [TBL] [Abstract][Full Text] [Related]
9. Structure and internal organization of overcharged cationic-lipid/peptide/DNA self-assembly complexes. Yan J; Berezhnoy NV; Korolev N; Su CJ; Nordenskiöld L Biochim Biophys Acta; 2012 Jul; 1818(7):1794-800. PubMed ID: 22503921 [TBL] [Abstract][Full Text] [Related]
10. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines. Naik RJ; Chatterjee A; Ganguli M Biochim Biophys Acta; 2013 Jun; 1828(6):1484-93. PubMed ID: 23454086 [TBL] [Abstract][Full Text] [Related]
11. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. Choi JS; Nam K; Park JY; Kim JB; Lee JK; Park JS J Control Release; 2004 Oct; 99(3):445-56. PubMed ID: 15451602 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of cell-permeable gene complex from poly(L-lactide) scaffold for enhanced stem cell tissue engineering. Jung MR; Shim IK; Kim ES; Park YJ; Yang YI; Lee SK; Lee SJ J Control Release; 2011 Jun; 152(2):294-302. PubMed ID: 21420455 [TBL] [Abstract][Full Text] [Related]
13. Dioleoyl phosphatidylethanolamine and PEG-lipid conjugates modify DNA delivery mediated by 1,4-dihydropyridine amphiphiles. Hyvönen Z; Rönkkö S; Toppinen MR; Jääskeläinen I; Plotniece A; Urtti A J Control Release; 2004 Sep; 99(1):177-90. PubMed ID: 15342190 [TBL] [Abstract][Full Text] [Related]
14. Calcium enhanced delivery of tetraarginine-PEG-lipid-coated DNA/protamine complexes. Fujita T; Furuhata M; Hattori Y; Kawakami H; Toma K; Maitani Y Int J Pharm; 2009 Feb; 368(1-2):186-92. PubMed ID: 18996454 [TBL] [Abstract][Full Text] [Related]
15. Diaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrier. Khan M; Ang CY; Wiradharma N; Yong LK; Liu S; Liu L; Gao S; Yang YY Biomaterials; 2012 Jun; 33(18):4673-80. PubMed ID: 22440050 [TBL] [Abstract][Full Text] [Related]
16. Protein nanodisk assembling and intracellular trafficking powered by an arginine-rich (R9) peptide. Vazquez E; Roldán M; Diez-Gil C; Unzueta U; Domingo-Espín J; Cedano J; Conchillo O; Ratera I; Veciana J; Daura X; Ferrer-Miralles N; Villaverde A Nanomedicine (Lond); 2010 Feb; 5(2):259-68. PubMed ID: 20148637 [TBL] [Abstract][Full Text] [Related]
17. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Tarwadi ; Jazayeri JA; Prankerd RJ; Pouton CW Bioconjug Chem; 2008 Apr; 19(4):940-50. PubMed ID: 18333604 [TBL] [Abstract][Full Text] [Related]
18. Targeting of plasmid DNA-lipoplexes to cells with molecules anchored via a metal chelator lipid. Herringson TP; Patlolla RR; Altin JG J Gene Med; 2009 Nov; 11(11):1048-63. PubMed ID: 19757485 [TBL] [Abstract][Full Text] [Related]
19. Lipopolyplex ternary delivery systems incorporating C14 glycerol-based lipids. Kudsiova L; Fridrich B; Ho J; Mustapa MF; Campbell F; Welser K; Keppler M; Ng T; Barlow DJ; Tabor AB; Hailes HC; Lawrence MJ Mol Pharm; 2011 Oct; 8(5):1831-47. PubMed ID: 21815622 [TBL] [Abstract][Full Text] [Related]
20. A Biodegradable Polyethylenimine-Based Vector Modified by Trifunctional Peptide R18 for Enhancing Gene Transfection Efficiency In Vivo. Hu J; Zhu M; Liu K; Fan H; Zhao W; Mao Y; Zhang Y PLoS One; 2016; 11(12):e0166673. PubMed ID: 27935984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]