BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27714372)

  • 1. Electrokinetics of nanoparticle gel-electrophoresis.
    Hill RJ
    Soft Matter; 2016 Sep; 12(38):8030-8048. PubMed ID: 27714372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle gel electrophoresis: soft spheres in polyelectrolyte hydrogels under the Debye-Hückel approximation.
    Li F; Allison SA; Hill RJ
    J Colloid Interface Sci; 2014 Jun; 423():129-42. PubMed ID: 24703678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.
    Li F; Hill RJ
    J Colloid Interface Sci; 2013 Mar; 394():1-12. PubMed ID: 23153681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.
    Zhu X; Mason TG
    J Colloid Interface Sci; 2014 Aug; 428():199-207. PubMed ID: 24910054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic modeling of metal oxides.
    Allison S
    J Colloid Interface Sci; 2009 Apr; 332(1):1-10. PubMed ID: 19101679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.
    Majee PS; Bhattacharyya S; Gopmandal PP; Ohshima H
    Electrophoresis; 2018 Mar; 39(5-6):794-806. PubMed ID: 28940641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle.
    Tietz D; Gombocz E; Chrambach A
    Electrophoresis; 1991 Oct; 12(10):710-21. PubMed ID: 1802689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ionic constituents and electrical conductivity on the propagation of charged nanoscale objects in passivated gel electrophoresis.
    Bikos DA; Mason TG
    Electrophoresis; 2018 Jan; 39(2):394-405. PubMed ID: 29114908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rotating disk electrokinetic method for characterizing polyelectrolyte pharmaceutical gels.
    Qu B; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):199-206. PubMed ID: 22342387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2015 Aug; 222():58-69. PubMed ID: 25456453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium.
    Allison SA; Xin Y; Pei H
    J Colloid Interface Sci; 2007 Sep; 313(1):328-37. PubMed ID: 17509603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation and Separation of Charged Colloids by Cylindrical Passivated Gel Electrophoresis.
    Bikos D; Mason TG
    J Phys Chem B; 2016 Jul; 120(26):6160-5. PubMed ID: 27109865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.
    Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z
    J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoresis and dielectric dispersion of spherical polyelectrolyte brushes.
    Ahualli S; Ballauff M; Arroyo FJ; Delgado ÁV; Jiménez ML
    Langmuir; 2012 Nov; 28(47):16372-81. PubMed ID: 23110617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel electrophoresis of a charge-regulated, bi-functional particle.
    Hsu JP; Huang CH; Tseng S
    Electrophoresis; 2013 Mar; 34(5):785-91. PubMed ID: 23161269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis.
    Tenzer S; Docter D; Rosfa S; Wlodarski A; Kuharev J; Rekik A; Knauer SK; Bantz C; Nawroth T; Bier C; Sirirattanapan J; Mann W; Treuel L; Zellner R; Maskos M; Schild H; Stauber RH
    ACS Nano; 2011 Sep; 5(9):7155-67. PubMed ID: 21866933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.
    Louie SM; Phenrat T; Small MJ; Tilton RD; Lowry GV
    Langmuir; 2012 Jul; 28(28):10334-47. PubMed ID: 22708677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.