BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27714373)

  • 1. Coarse-grained modeling of crystal growth and polymorphism of a model pharmaceutical molecule.
    Mandal T; Marson RL; Larson RG
    Soft Matter; 2016 Oct; 12(39):8246-8255. PubMed ID: 27714373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach.
    Huang W; Mandal T; Larson RG
    Mol Pharm; 2017 Mar; 14(3):733-745. PubMed ID: 28142242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin.
    Huang W; Mandal T; Larson RG
    Mol Pharm; 2017 Oct; 14(10):3422-3435. PubMed ID: 28829134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for multi-scale simulation of crystal growth in the presence of polymers.
    Mandal T; Huang W; Mecca JM; Getchell A; Porter WW; Larson RG
    Soft Matter; 2017 Mar; 13(9):1904-1913. PubMed ID: 28181622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening.
    Neumann MA; van de Streek J; Fabbiani FP; Hidber P; Grassmann O
    Nat Commun; 2015 Jul; 6():7793. PubMed ID: 26198974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of coarse-grained force fields: the polymer case.
    Carbone P; Varzaneh HA; Chen X; Müller-Plathe F
    J Chem Phys; 2008 Feb; 128(6):064904. PubMed ID: 18282071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CUMULUS coarse graining method: transferable potentials for water and solutes.
    van Hoof B; Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2011 Aug; 115(33):10001-12. PubMed ID: 21740053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical simulations from the atomistic to the mesoscale and back: coarse graining an liquid crystal.
    Peter C; Delle Site L; Kremer K
    Soft Matter; 2008 Mar; 4(4):859-869. PubMed ID: 32907192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-based multiscale coarse graining with density-dependent potentials: application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine).
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2011 Jul; 135(4):044112. PubMed ID: 21806095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution.
    Chan ER; Striolo A; McCabe C; Cummings PT; Glotzer SC
    J Chem Phys; 2007 Sep; 127(11):114102. PubMed ID: 17887823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic coarse-graining of molecular models by the Newton inversion method.
    Lyubartsev A; Mirzoev A; Chen L; Laaksonen A
    Faraday Discuss; 2010; 144():43-56; discussion 93-110, 467-81. PubMed ID: 20158022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multiscale coarse-graining method. IX. A general method for construction of three body coarse-grained force fields.
    Das A; Andersen HC
    J Chem Phys; 2012 May; 136(19):194114. PubMed ID: 22612087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials.
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2010 Aug; 133(6):064109. PubMed ID: 20707563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of minoxidil at low temperature and polymorph prediction.
    Martín-Islán AP; Martín-Ramos D; Sainz-Díaz CI
    J Pharm Sci; 2008 Feb; 97(2):815-30. PubMed ID: 17721941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride.
    Jayaraman S; Maginn EJ
    J Chem Phys; 2007 Dec; 127(21):214504. PubMed ID: 18067361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective force coarse-graining.
    Wang Y; Noid WG; Liu P; Voth GA
    Phys Chem Chem Phys; 2009 Mar; 11(12):2002-15. PubMed ID: 19280011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight to the thermodynamic stability of molecular crystals through crystallographic studies of a multipolymorph system.
    Ng AT; Lai C; Dabros M; Gao Q
    J Pharm Sci; 2014 Nov; 103(11):3423-3431. PubMed ID: 25252084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-Grained Molecular Dynamics Force-Field for Polyacrylamide in Infinite Dilution Derived from Iterative Boltzmann Inversion and MARTINI Force-Field.
    Banerjee P; Roy S; Nair N
    J Phys Chem B; 2018 Feb; 122(4):1516-1524. PubMed ID: 29278334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.