These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27714666)

  • 21. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach.
    Dollé L; Chavarriaga R; Guillot A; Khamassi M
    PLoS Comput Biol; 2018 Apr; 14(4):e1006092. PubMed ID: 29630600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do.
    van Gerven DJ; Schneider AN; Wuitchik DM; Skelton RW
    Behav Neurosci; 2012 Jun; 126(3):465-78. PubMed ID: 22642888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual Morris water maze: opportunities and challenges.
    Thornberry C; Cimadevilla JM; Commins S
    Rev Neurosci; 2021 Dec; 32(8):887-903. PubMed ID: 33838098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task.
    Rice JP; Wallace DG; Hamilton DA
    Behav Brain Res; 2015 Aug; 289():105-17. PubMed ID: 25907746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The art gallery maze: a novel tool to assess human navigational abilities.
    Taheri Gorji H; Leocadi M; Grassi F; Galati G
    Cogn Process; 2021 Aug; 22(3):501-514. PubMed ID: 33792831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults.
    Daugherty AM; Raz N
    Neuroimage; 2017 Feb; 146():492-506. PubMed ID: 27659539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury.
    Livingstone SA; Skelton RW
    Behav Brain Res; 2007 Dec; 185(1):21-31. PubMed ID: 17727970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Navigation strategy in macaque monkeys: An exploratory experiment in virtual reality.
    Taillade M; N'Kaoua B; Gross C
    J Neurosci Methods; 2019 Oct; 326():108336. PubMed ID: 31276693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial representations of virtual mazes: the role of visual fidelity and individual differences.
    Waller D; Knapp D; Hunt E
    Hum Factors; 2001; 43(1):147-58. PubMed ID: 11474760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation.
    Astur RS; Tropp J; Sava S; Constable RT; Markus EJ
    Behav Brain Res; 2004 May; 151(1-2):103-15. PubMed ID: 15084426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Childhood wayfinding experience explains sex and individual differences in adult wayfinding strategy and anxiety.
    Vieites V; Pruden SM; Reeb-Sutherland BC
    Cogn Res Princ Implic; 2020 Mar; 5(1):12. PubMed ID: 32185533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.
    Rahman Q; Sharp J; McVeigh M; Ho ML
    Arch Sex Behav; 2017 Jul; 46(5):1279-1294. PubMed ID: 28401317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI.
    Rodriguez PF
    Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple gaze analysis and special design of a virtual Morris water maze provides a new method for differentiating egocentric and allocentric navigational strategy choice.
    Livingstone-Lee SA; Murchison S; Zeman PM; Gandhi M; van Gerven D; Stewart L; Livingston NJ; Skelton RW
    Behav Brain Res; 2011 Nov; 225(1):117-25. PubMed ID: 21771614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial navigation in virtual reality environments: an EEG analysis.
    Bischof WF; Boulanger P
    Cyberpsychol Behav; 2003 Oct; 6(5):487-95. PubMed ID: 14583124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gender differences in spatial navigation: Characterizing wayfinding behaviors.
    Munion AK; Stefanucci JK; Rovira E; Squire P; Hendricks M
    Psychon Bull Rev; 2019 Dec; 26(6):1933-1940. PubMed ID: 31432331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies.
    Vorhees CV; Williams MT
    Neurotoxicol Teratol; 2014; 45():75-90. PubMed ID: 25116937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies.
    Blanchette CA; Kurdi V; Fouquet C; Schachar R; Boivin M; Hastings P; Robaey P; West GL; Bohbot VD
    Neurobiol Learn Mem; 2020 Mar; 169():107172. PubMed ID: 31978550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference.
    Astur RS; Ortiz ML; Sutherland RJ
    Behav Brain Res; 1998 Jun; 93(1-2):185-90. PubMed ID: 9659999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mongolian gerbils learn to navigate in complex virtual spaces.
    Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C
    Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.