BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 27714841)

  • 1. Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation.
    Partlett C; Riley RD
    Stat Med; 2017 Jan; 36(2):301-317. PubMed ID: 27714841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
    Seide SE; Röver C; Friede T
    BMC Med Res Methodol; 2019 Jan; 19(1):16. PubMed ID: 30634920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
    Langan D; Higgins JPT; Jackson D; Bowden J; Veroniki AA; Kontopantelis E; Viechtbauer W; Simmonds M
    Res Synth Methods; 2019 Mar; 10(1):83-98. PubMed ID: 30067315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies.
    Röver C; Knapp G; Friede T
    BMC Med Res Methodol; 2015 Nov; 15():99. PubMed ID: 26573817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian estimation in random effects meta-analysis using a non-informative prior.
    Bodnar O; Link A; Arendacká B; Possolo A; Elster C
    Stat Med; 2017 Jan; 36(2):378-399. PubMed ID: 27790722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression.
    van Aert RCM; Jackson D
    Res Synth Methods; 2019 Dec; 10(4):515-527. PubMed ID: 31111673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the performance of Bayesian and restricted maximum likelihood estimation for stepped wedge cluster randomized trials with a small number of clusters.
    Grantham KL; Kasza J; Heritier S; Carlin JB; Forbes AB
    BMC Med Res Methodol; 2022 Apr; 22(1):112. PubMed ID: 35418034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis.
    Wiksten A; Rücker G; Schwarzer G
    Stat Med; 2016 Jul; 35(15):2503-15. PubMed ID: 26842654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual participant data meta-analysis of continuous outcomes: A comparison of approaches for specifying and estimating one-stage models.
    Legha A; Riley RD; Ensor J; Snell KIE; Morris TP; Burke DL
    Stat Med; 2018 Dec; 37(29):4404-4420. PubMed ID: 30101507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming the Model T: random effects meta-analysis with stable weights.
    Malloy MJ; Prendergast LA; Staudte RG
    Stat Med; 2013 May; 32(11):1842-64. PubMed ID: 23097338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression.
    Noma H; Hamura Y; Gosho M; Furukawa TA
    Res Synth Methods; 2023 Sep; 14(5):731-741. PubMed ID: 37399845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis of few small studies in orphan diseases.
    Friede T; Röver C; Wandel S; Neuenschwander B
    Res Synth Methods; 2017 Mar; 8(1):79-91. PubMed ID: 27362487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method.
    IntHout J; Ioannidis JP; Borm GF
    BMC Med Res Methodol; 2014 Feb; 14():25. PubMed ID: 24548571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of methods for meta-analysis of a small number of studies with binary outcomes.
    Mathes T; Kuss O
    Res Synth Methods; 2018 Sep; 9(3):366-381. PubMed ID: 29573180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do statistical heterogeneity methods impact the results of meta- analyses? A meta epidemiological study.
    Mheissen S; Khan H; Normando D; Vaiid N; Flores-Mir C
    PLoS One; 2024; 19(3):e0298526. PubMed ID: 38502662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jointly pooling aggregated effect sizes and their standard errors from studies with continuous clinical outcomes.
    Almalik O; Zhan Z; Heuvel ERVD
    Biom J; 2022 Oct; 64(7):1340-1360. PubMed ID: 35754152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases.
    Friede T; Röver C; Wandel S; Neuenschwander B
    Biom J; 2017 Jul; 59(4):658-671. PubMed ID: 27754556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
    Bakbergenuly I; Hoaglin DC; Kulinskaya E
    Res Synth Methods; 2020 May; 11(3):426-442. PubMed ID: 32112619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interval estimation of the overall treatment effect in random-effects meta-analyses: Recommendations from a simulation study comparing frequentist, Bayesian, and bootstrap methods.
    Weber F; Knapp G; Glass Ä; Kundt G; Ickstadt K
    Res Synth Methods; 2021 May; 12(3):291-315. PubMed ID: 33264488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
    Ma Y; Mazumdar M
    Stat Med; 2011 Oct; 30(24):2911-29. PubMed ID: 21830230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.