These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27714996)

  • 1. Flexible Microsupercapacitors Using Silk and Cotton Substrates.
    Das C; Krishnamoorthy K
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29504-29510. PubMed ID: 27714996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications.
    Moon IK; Yoon S; Lee HU; Kim SW; Oh J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40580-40592. PubMed ID: 29067808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Energy Density, Super-Deformable, Garment-Integrated Microsupercapacitors for Powering Wearable Electronics.
    Zhang L; Viola W; Andrew TL
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36834-36840. PubMed ID: 30295460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Conductive Ti
    Zhang J; Seyedin S; Qin S; Wang Z; Moradi S; Yang F; Lynch PA; Yang W; Liu J; Wang X; Razal JM
    Small; 2019 Feb; 15(8):e1804732. PubMed ID: 30653274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and Wearable Fiber Microsupercapacitors Based on Carbon Nanotube-Agarose Gel Composite Electrodes.
    Kim SK; Koo HJ; Liu J; Braun PV
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19925-19933. PubMed ID: 28537375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Reduced Graphene Oxide/Poly(3,4-Ethylenedioxythiophene) Composite Open Network Architectures for Microsupercapacitors.
    Mao X; He X; Xu J; Yang W; Liu H; Yang Y; Zhou Y
    Nanoscale Res Lett; 2019 Aug; 14(1):267. PubMed ID: 31388867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.
    Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C
    Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenols from green tea as a dual functional coating to prepare devices for energy storage and molecular separation.
    Das C; Jain B; Krishnamoorthy K
    Chem Commun (Camb); 2015 Jul; 51(58):11662-4. PubMed ID: 26102505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins.
    Pal RK; Kundu SC; Yadavalli VK
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9620-9628. PubMed ID: 29480009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors.
    Hu H; Pei Z; Fan H; Ye C
    Small; 2016 Jun; 12(22):3059-69. PubMed ID: 27116677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.
    Zhao X; Dong M; Zhang J; Li Y; Zhang Q
    Nanotechnology; 2016 Sep; 27(38):385705. PubMed ID: 27533130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics.
    Mirabedini A; Lu Z; Mostafavian S; Foroughi J
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.
    Shen C; Xie Y; Sanghadasa M; Tang Y; Lu L; Lin L
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39391-39398. PubMed ID: 29035032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors.
    Yang H; Xu H; Li M; Zhang L; Huang Y; Hu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1774-9. PubMed ID: 26709837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Microcavity Array Electrodes for High-Capacitance All-Solid-State Flexible Microsupercapacitors.
    Maeng J; Kim YJ; Meng C; Irazoqui PP
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13458-65. PubMed ID: 27176134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent and Multi-Foldable Nanocellulose Paper Microsupercapacitors.
    Kim SW; Lee KH; Lee YH; Youe WJ; Gwon JG; Lee SY
    Adv Sci (Weinh); 2022 Dec; 9(34):e2203720. PubMed ID: 36257816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage.
    Liu N; Ma W; Tao J; Zhang X; Su J; Li L; Yang C; Gao Y; Golberg D; Bando Y
    Adv Mater; 2013 Sep; 25(35):4925-31. PubMed ID: 23893899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.