These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27714996)

  • 21. Flexible and Conductive Polymer Threads for Efficient Fiber-Shaped Supercapacitors
    Hu J; Gao B; Qi Q; Zuo Z; Yan K; Hou S; Zou D
    ACS Omega; 2022 Sep; 7(36):31628-31637. PubMed ID: 36120072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From natural cotton thread to sewable energy dense supercapacitors.
    Zhi J; Reiser O; Wang Y; Hu A
    Nanoscale; 2017 May; 9(19):6406-6416. PubMed ID: 28463363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances.
    Wang Z; Carlsson DO; Tammela P; Hua K; Zhang P; Nyholm L; Strømme M
    ACS Nano; 2015 Jul; 9(7):7563-71. PubMed ID: 26083393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance.
    Ferris A; Bourrier D; Garbarino S; Guay D; Pech D
    Small; 2019 Jul; 15(27):e1901224. PubMed ID: 31095888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance.
    Velasco A; Ryu YK; Hamada A; de Andrés A; Calle F; Martinez J
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors.
    Peng Z; Ye R; Mann JA; Zakhidov D; Li Y; Smalley PR; Lin J; Tour JM
    ACS Nano; 2015 Jun; 9(6):5868-75. PubMed ID: 25978090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function.
    Wang J; Bandari VK; Karnaushenko D; Li Y; Li F; Zhang P; Baunack S; Karnaushenko DD; Becker C; Faghih M; Kang T; Duan S; Zhu M; Zhuang X; Zhu F; Feng X; Schmidt OG
    ACS Nano; 2019 Jul; 13(7):8067-8075. PubMed ID: 31274285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance.
    Khalid S; Cao C; Wang L; Zhu Y
    Sci Rep; 2016 Mar; 6():22699. PubMed ID: 26936283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors.
    Song D; Secor EB; Wang Y; Hersam MC; Frisbie CD
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22303-22310. PubMed ID: 29894146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers.
    Zhang Y; Zhao Y; Cheng X; Weng W; Ren J; Fang X; Jiang Y; Chen P; Zhang Z; Wang Y; Peng H
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11177-82. PubMed ID: 26352028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications.
    Li L; Lou Z; Han W; Shen G
    Nanoscale; 2016 Aug; 8(32):14986-91. PubMed ID: 27466001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers.
    Pan H; Wang D; Peng Q; Ma J; Meng X; Zhang Y; Ma Y; Zhu S; Zhang D
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10157-10164. PubMed ID: 29512996
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Ji Y; Zhang X; Zhu Y; Norton ML; Shen L; Tan W; Zheng X; Li S
    Front Bioeng Biotechnol; 2022; 10():1059399. PubMed ID: 36466356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly conductive poly(3,4-ethylenedioxypyrrole) and poly(3,4-ethylenedioxythiophene) enwrapped Sb2S3 nanorods for flexible supercapacitors.
    Reddy BN; Deepa M; Joshi AG
    Phys Chem Chem Phys; 2014 Feb; 16(5):2062-71. PubMed ID: 24343566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of high-performance MXene-based all-solid-state flexible microsupercapacitor based on a facile scratch method.
    Li P; Shi W; Liu W; Chen Y; Xu X; Ye S; Yin R; Zhang L; Xu L; Cao X
    Nanotechnology; 2018 Nov; 29(44):445401. PubMed ID: 30113908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.
    Li Z; Ma G; Ge R; Qin F; Dong X; Meng W; Liu T; Tong J; Jiang F; Zhou Y; Li K; Min X; Huo K; Zhou Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):979-82. PubMed ID: 26630234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors.
    Song D; Zare Bidoky F; Secor EB; Hersam MC; Frisbie CD
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9947-9954. PubMed ID: 30758176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-RuO
    Zhai S; Wang C; Karahan HE; Wang Y; Chen X; Sui X; Huang Q; Liao X; Wang X; Chen Y
    Small; 2018 Jun; ():e1800582. PubMed ID: 29882370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.