These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27714999)

  • 21. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alkali-Oxygen Batteries Based on Reversible Superoxide Chemistry.
    McCulloch WD; Xiao N; Gourdin G; Wu Y
    Chemistry; 2018 Dec; 24(67):17627-17637. PubMed ID: 30011356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes.
    Guduru RK; Icaza JC
    Nanomaterials (Basel); 2016 Feb; 6(3):. PubMed ID: 28344298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High performance Li-ion sulfur batteries enabled by intercalation chemistry.
    Lv D; Yan P; Shao Y; Li Q; Ferrara S; Pan H; Graff GL; Polzin B; Wang C; Zhang JG; Liu J; Xiao J
    Chem Commun (Camb); 2015 Sep; 51(70):13454-7. PubMed ID: 26214797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding side reactions in K-O2 batteries for improved cycle life.
    Ren X; Lau KC; Yu M; Bi X; Kreidler E; Curtiss LA; Wu Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19299-307. PubMed ID: 25295518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What Do Laser-Induced Transient Techniques Reveal for Batteries? Na- and K-Intercalation from Aqueous Electrolytes as an Example.
    Scieszka D; Yun J; Bandarenka AS
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20213-20222. PubMed ID: 28530796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries.
    Gao Y; Yang H; Wang X; Bai Y; Zhu N; Guo S; Suo L; Li H; Xu H; Wu C
    ChemSusChem; 2020 Feb; 13(4):732-740. PubMed ID: 31854079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.
    Yang C; Suo L; Borodin O; Wang F; Sun W; Gao T; Fan X; Hou S; Ma Z; Amine K; Xu K; Wang C
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6197-6202. PubMed ID: 28566497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte.
    Hibino M; Harimoto R; Ogasawara Y; Kido R; Sugahara A; Kudo T; Tochigi E; Shibata N; Ikuhara Y; Mizuno N
    J Am Chem Soc; 2014 Jan; 136(1):488-94. PubMed ID: 24344633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries.
    Wang L; Song J; Qiao R; Wray LA; Hossain MA; Chuang YD; Yang W; Lu Y; Evans D; Lee JJ; Vail S; Zhao X; Nishijima M; Kakimoto S; Goodenough JB
    J Am Chem Soc; 2015 Feb; 137(7):2548-54. PubMed ID: 25615887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superoxide Stabilization and a Universal KO
    Wang W; Lai NC; Liang Z; Wang Y; Lu YC
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5042-5046. PubMed ID: 29509317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries.
    Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J
    Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries.
    Zhao Q; Hu Y; Zhang K; Chen J
    Inorg Chem; 2014 Sep; 53(17):9000-5. PubMed ID: 25119141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.
    Shui JL; Okasinski JS; Kenesei P; Dobbs HA; Zhao D; Almer JD; Liu DJ
    Nat Commun; 2013; 4():2255. PubMed ID: 23929396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode.
    McCulloch WD; Ren X; Yu M; Huang Z; Wu Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Electrodes for K-Ion Batteries.
    Jian Z; Luo W; Ji X
    J Am Chem Soc; 2015 Sep; 137(36):11566-9. PubMed ID: 26333059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.