These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 27714999)
41. Carbon Electrodes for K-Ion Batteries. Jian Z; Luo W; Ji X J Am Chem Soc; 2015 Sep; 137(36):11566-9. PubMed ID: 26333059 [TBL] [Abstract][Full Text] [Related]
42. The Rechargeable Aluminum Battery: Opportunities and Challenges. Yang H; Li H; Li J; Sun Z; He K; Cheng HM; Li F Angew Chem Int Ed Engl; 2019 Aug; 58(35):11978-11996. PubMed ID: 30687993 [TBL] [Abstract][Full Text] [Related]
43. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. Xie X; Wang S; Kretschmer K; Wang G J Colloid Interface Sci; 2017 Aug; 499():17-32. PubMed ID: 28363101 [TBL] [Abstract][Full Text] [Related]
44. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
45. The staging mechanism of AlCl Bhauriyal P; Mahata A; Pathak B Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339 [TBL] [Abstract][Full Text] [Related]
46. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries. Pan CJ; Yuan C; Zhu G; Zhang Q; Huang CJ; Lin MC; Angell M; Hwang BJ; Kaghazchi P; Dai H Proc Natl Acad Sci U S A; 2018 May; 115(22):5670-5675. PubMed ID: 29760096 [TBL] [Abstract][Full Text] [Related]
47. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823 [TBL] [Abstract][Full Text] [Related]
48. A review of recent developments in rechargeable lithium-sulfur batteries. Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962 [TBL] [Abstract][Full Text] [Related]
50. Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. Borchardt L; Oschatz M; Kaskel S Chemistry; 2016 May; 22(22):7324-51. PubMed ID: 27001631 [TBL] [Abstract][Full Text] [Related]
51. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Share K; Cohn AP; Carter RE; Pint CL Nanoscale; 2016 Sep; 8(36):16435-16439. PubMed ID: 27714105 [TBL] [Abstract][Full Text] [Related]
52. Prospects and Limits of Energy Storage in Batteries. Abraham KM J Phys Chem Lett; 2015 Mar; 6(5):830-44. PubMed ID: 26262660 [TBL] [Abstract][Full Text] [Related]
53. Recent research progress in non-aqueous potassium-ion batteries. Zou X; Xiong P; Zhao J; Hu J; Liu Z; Xu Y Phys Chem Chem Phys; 2017 Oct; 19(39):26495-26506. PubMed ID: 28951925 [TBL] [Abstract][Full Text] [Related]
54. Capacity Contribution Induced by Pseudo-Capacitance Adsorption Mechanism of Anode Carbonaceous Materials Applied in Potassium-ion Battery. Liu J; Xu Z; Wu M; Wang Y; Karim Z Front Chem; 2019; 7():640. PubMed ID: 31632945 [TBL] [Abstract][Full Text] [Related]
55. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Jache B; Binder JO; Abe T; Adelhelm P Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175 [TBL] [Abstract][Full Text] [Related]
56. Secondary batteries with multivalent ions for energy storage. Xu C; Chen Y; Shi S; Li J; Kang F; Su D Sci Rep; 2015 Sep; 5():14120. PubMed ID: 26365600 [TBL] [Abstract][Full Text] [Related]
57. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries. García JM; Horn HW; Rice JE J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250 [TBL] [Abstract][Full Text] [Related]
58. Hybrid system for rechargeable magnesium battery with high energy density. Chang Z; Yang Y; Wang X; Li M; Fu Z; Wu Y; Holze R Sci Rep; 2015 Jul; 5():11931. PubMed ID: 26173624 [TBL] [Abstract][Full Text] [Related]
59. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940 [TBL] [Abstract][Full Text] [Related]
60. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Gao J; Abruña HD J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]