These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27715426)

  • 21. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes.
    Bishnoi M; Chopra K; Kulkarni SK
    Eur J Pharmacol; 2006 Dec; 552(1-3):55-66. PubMed ID: 17064683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diadenosine pentaphosphate increases levels of intracellular calcium in astrocytes by a mechanism involving release from caffeine/ryanodine- and IP3-sensitive stores.
    Holden CP; Haughey NJ; Dolhun B; Shepel PN; Nath A; Geiger JD
    J Neurosci Res; 2000 Jan; 59(2):276-82. PubMed ID: 10650886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis.
    Nakatani Y; Matsumoto Y; Mori Y; Hirashima D; Nishino H; Arikawa K; Mizunami M
    Neurobiol Learn Mem; 2009 Oct; 92(3):370-80. PubMed ID: 19435611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of NO signaling in long-term memory formation in visual learning in an insect.
    Matsumoto Y; Hirashima D; Terao K; Mizunami M
    PLoS One; 2013; 8(7):e68538. PubMed ID: 23894314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.
    Zheng X; Hasegawa H
    Pharmacol Biochem Behav; 2016 Jan; 140():82-9. PubMed ID: 26604076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists.
    Bespalov A; Dravolina O; Belozertseva I; Adamcio B; Zvartau E
    Behav Pharmacol; 2006 Jun; 17(4):295-302. PubMed ID: 16914947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer's mice and cells.
    Dragicevic N; Delic V; Cao C; Copes N; Lin X; Mamcarz M; Wang L; Arendash GW; Bradshaw PC
    Neuropharmacology; 2012 Dec; 63(8):1368-79. PubMed ID: 22959965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caffeine inhibits cytokine expression in lymphocytes.
    Ritter M; Hohenberger K; Alter P; Herzum M; Tebbe J; Maisch M
    Cytokine; 2005 May; 30(4):177-81. PubMed ID: 15863391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the regulation and function of adult neurogenesis: contribution from an insect model, the house cricket.
    Cayre M; Scotto-Lomassese S; Malaterre J; Strambi C; Strambi A
    Chem Senses; 2007 May; 32(4):385-95. PubMed ID: 17404150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depressing effect of caffeine at crayfish neuromuscular synapses II. Initial search for possible sites of action.
    Celenza KM; Shugert E; Vélez SJ
    Cell Mol Neurobiol; 2007 May; 27(3):381-93. PubMed ID: 17235692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of state-dependent learning in the cognitive effects of caffeine in mice.
    Sanday L; Zanin KA; Patti CL; Fernandes-Santos L; Oliveira LC; Longo BM; Andersen ML; Tufik S; Frussa-Filho R
    Int J Neuropsychopharmacol; 2013 Aug; 16(7):1547-57. PubMed ID: 23363704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the roles of presynaptic ryanodine receptors and adenosine receptors in caffeine-induced enhancement of hippocampal mossy fiber transmission.
    Sato I; Kamiya H
    Neurosci Res; 2011 Oct; 71(2):183-7. PubMed ID: 21782858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of behavioural automaticity by extended Pavlovian training in an insect.
    Mizunami M; Hirohata S; Sato A; Arai R; Terao K; Sato M; Matsumoto Y
    Proc Biol Sci; 2019 Jan; 286(1894):20182132. PubMed ID: 30963861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Caffeine and the olfactory bulb.
    Hadfield MG
    Mol Neurobiol; 1997 Aug; 15(1):31-9. PubMed ID: 9396003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candidate mechanisms of caffeine improving memory dysfunction.
    Alhowail A
    Pharmazie; 2019 Dec; 74(12):705-710. PubMed ID: 31907107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Caffeine. Physiological and pharmacological aspects].
    Nørager CB; Jensen MB; Madsen MR
    Ugeskr Laeger; 2004 May; 166(22):2138-42. PubMed ID: 15222164
    [No Abstract]   [Full Text] [Related]  

  • 37. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct.
    Tamashiro H; Yoshino M
    J Insect Physiol; 2014 Dec; 71():97-104. PubMed ID: 25450564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DARPP chocolate: a caffeinated morsel of striatal signaling.
    Bastia E; Schwarzschild MA
    Sci STKE; 2003 Jan; 2003(165):PE2. PubMed ID: 12527819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling Pathways for Long-Term Memory Formation in the Cricket.
    Matsumoto Y; Matsumoto CS; Mizunami M
    Front Psychol; 2018; 9():1014. PubMed ID: 29988479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera).
    Si A; Zhang SW; Maleszka R
    Pharmacol Biochem Behav; 2005 Dec; 82(4):664-72. PubMed ID: 16375953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.