BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27716028)

  • 1. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis.
    Yang W; Qi Y; Fu J
    BMC Genet; 2016 Oct; 17(1):134. PubMed ID: 27716028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression variations in high-altitude adaptation: a case study of the Asiatic toad (Bufo gargarizans).
    Yang W; Qi Y; Lu B; Qiao L; Wu Y; Fu J
    BMC Genet; 2017 Jul; 18(1):62. PubMed ID: 28673260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: a comparative transcriptomic analysis of two ranid frogs, Rana chensinensis and R. kukunoris.
    Yang W; Qi Y; Bi K; Fu J
    BMC Genomics; 2012 Nov; 13():588. PubMed ID: 23116153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau.
    Yang Y; Wang L; Han J; Tang X; Ma M; Wang K; Zhang X; Ren Q; Chen Q; Qiu Q
    BMC Evol Biol; 2015 Jun; 15():101. PubMed ID: 26031664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plateau Grass and Greenhouse Flower? Distinct Genetic Basis of Closely Related Toad Tadpoles Respectively Adapted to High Altitude and Karst Caves.
    Chang L; Zhu W; Shi S; Zhang M; Jiang J; Li C; Xie F; Wang B
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31979140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad Bufo andrewsi.
    Guo B; Lu D; Liao WB; Merilä J
    Mol Ecol; 2016 Aug; 25(16):3884-900. PubMed ID: 27289071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus).
    Yang W; Qi Y; Fu J
    PLoS One; 2014; 9(11):e112218. PubMed ID: 25386640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Tissue Transcriptomes Yield Information on High-Altitude Adaptation and Sex-Determination in
    Hofmann S; Kuhl H; Baniya CB; Stöck M
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31683620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes.
    Wang Y; Yang L; Wu B; Song Z; He S
    Gene; 2015 Jul; 565(2):211-20. PubMed ID: 25869933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis).
    Fischer MC; Foll M; Excoffier L; Heckel G
    Mol Ecol; 2011 Apr; 20(7):1450-62. PubMed ID: 21352386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations.
    Jha AR; Zhou D; Brown CD; Kreitman M; Haddad GG; White KP
    Mol Biol Evol; 2016 Feb; 33(2):501-17. PubMed ID: 26576852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments.
    Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML
    Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis.
    Kang J; Ma X; He S
    BMC Evol Biol; 2017 Nov; 17(1):229. PubMed ID: 29169322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life.
    Tong C; Fei T; Zhang C; Zhao K
    BMC Evol Biol; 2017 Mar; 17(1):74. PubMed ID: 28274203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria).
    Bonin A; Taberlet P; Miaud C; Pompanon F
    Mol Biol Evol; 2006 Apr; 23(4):773-83. PubMed ID: 16396915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin.
    Fan W; Jiang Y; Zhang M; Yang D; Chen Z; Sun H; Lan X; Yan F; Xu J; Yuan W
    PLoS One; 2017; 12(12):e0190023. PubMed ID: 29267366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Adaptation of Siberian Larch (
    Novikova SV; Sharov VV; Oreshkova NV; Simonov EP; Krutovsky KV
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular convergent and parallel evolution among four high-elevation anuran species from the Tibetan region.
    Lu B; Jin H; Fu J
    BMC Genomics; 2020 Nov; 21(1):839. PubMed ID: 33246413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation.
    De Wit P; Palumbi SR
    Mol Ecol; 2013 Jun; 22(11):2884-97. PubMed ID: 23106543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.