These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27716028)
1. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. Yang W; Qi Y; Fu J BMC Genet; 2016 Oct; 17(1):134. PubMed ID: 27716028 [TBL] [Abstract][Full Text] [Related]
2. Gene expression variations in high-altitude adaptation: a case study of the Asiatic toad (Bufo gargarizans). Yang W; Qi Y; Lu B; Qiao L; Wu Y; Fu J BMC Genet; 2017 Jul; 18(1):62. PubMed ID: 28673260 [TBL] [Abstract][Full Text] [Related]
3. Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: a comparative transcriptomic analysis of two ranid frogs, Rana chensinensis and R. kukunoris. Yang W; Qi Y; Bi K; Fu J BMC Genomics; 2012 Nov; 13():588. PubMed ID: 23116153 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. Yang Y; Wang L; Han J; Tang X; Ma M; Wang K; Zhang X; Ren Q; Chen Q; Qiu Q BMC Evol Biol; 2015 Jun; 15():101. PubMed ID: 26031664 [TBL] [Abstract][Full Text] [Related]
5. Plateau Grass and Greenhouse Flower? Distinct Genetic Basis of Closely Related Toad Tadpoles Respectively Adapted to High Altitude and Karst Caves. Chang L; Zhu W; Shi S; Zhang M; Jiang J; Li C; Xie F; Wang B Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31979140 [TBL] [Abstract][Full Text] [Related]
6. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad Bufo andrewsi. Guo B; Lu D; Liao WB; Merilä J Mol Ecol; 2016 Aug; 25(16):3884-900. PubMed ID: 27289071 [TBL] [Abstract][Full Text] [Related]
7. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus). Yang W; Qi Y; Fu J PLoS One; 2014; 9(11):e112218. PubMed ID: 25386640 [TBL] [Abstract][Full Text] [Related]
8. Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives. Niu Y; Zhang X; Zhang H; Men S; Xu T; Ding L; Li X; Wang L; Wang H; Storey KB; Chen Q BMC Biol; 2024 Oct; 22(1):231. PubMed ID: 39390465 [TBL] [Abstract][Full Text] [Related]
9. Multi-Tissue Transcriptomes Yield Information on High-Altitude Adaptation and Sex-Determination in Hofmann S; Kuhl H; Baniya CB; Stöck M Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31683620 [TBL] [Abstract][Full Text] [Related]
10. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes. Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes. Wang Y; Yang L; Wu B; Song Z; He S Gene; 2015 Jul; 565(2):211-20. PubMed ID: 25869933 [TBL] [Abstract][Full Text] [Related]
12. Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Fischer MC; Foll M; Excoffier L; Heckel G Mol Ecol; 2011 Apr; 20(7):1450-62. PubMed ID: 21352386 [TBL] [Abstract][Full Text] [Related]
13. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. Jha AR; Zhou D; Brown CD; Kreitman M; Haddad GG; White KP Mol Biol Evol; 2016 Feb; 33(2):501-17. PubMed ID: 26576852 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990 [TBL] [Abstract][Full Text] [Related]
15. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis. Kang J; Ma X; He S BMC Evol Biol; 2017 Nov; 17(1):229. PubMed ID: 29169322 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. Tong C; Fei T; Zhang C; Zhao K BMC Evol Biol; 2017 Mar; 17(1):74. PubMed ID: 28274203 [TBL] [Abstract][Full Text] [Related]
17. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Bonin A; Taberlet P; Miaud C; Pompanon F Mol Biol Evol; 2006 Apr; 23(4):773-83. PubMed ID: 16396915 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin. Fan W; Jiang Y; Zhang M; Yang D; Chen Z; Sun H; Lan X; Yan F; Xu J; Yuan W PLoS One; 2017; 12(12):e0190023. PubMed ID: 29267366 [TBL] [Abstract][Full Text] [Related]
20. Molecular convergent and parallel evolution among four high-elevation anuran species from the Tibetan region. Lu B; Jin H; Fu J BMC Genomics; 2020 Nov; 21(1):839. PubMed ID: 33246413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]