BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27716473)

  • 1. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis.
    Lyu C; Hu S; Huang J; Luo M; Lu T; Mei L; Yao S
    Int J Food Microbiol; 2016 Dec; 238():302-310. PubMed ID: 27716473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis.
    Gong L; Ren C; Xu Y
    Microb Cell Fact; 2019 Jun; 18(1):108. PubMed ID: 31196094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production.
    Lyu C; Zhao W; Peng C; Hu S; Fang H; Hua Y; Yao S; Huang J; Mei L
    Microb Cell Fact; 2018 Nov; 17(1):180. PubMed ID: 30454056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology-Oriented Engineering Strategy to Improve Gamma-Aminobutyrate Production in Lactobacillus brevis.
    Lyu CJ; Zhao WR; Hu S; Huang J; Lu T; Jin ZH; Mei LH; Yao SJ
    J Agric Food Chem; 2017 Feb; 65(4):858-866. PubMed ID: 28067044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation.
    Li H; Qiu T; Huang G; Cao Y
    Microb Cell Fact; 2010 Nov; 9():85. PubMed ID: 21070676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics reveal different metabolic strategies for acid resistance and gamma-aminobutyric acid (GABA) production in select Levilactobacillus brevis strains.
    Banerjee S; Poore M; Gerdes S; Nedveck D; Lauridsen L; Kristensen HT; Jensen HM; Byrd PM; Ouwehand AC; Patterson E; Morovic W
    Microb Cell Fact; 2021 Sep; 20(1):173. PubMed ID: 34488774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of
    Lim HS; Cha IT; Roh SW; Shin HH; Seo MJ
    J Microbiol Biotechnol; 2017 Mar; 27(3):450-459. PubMed ID: 27880963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation.
    Wu CH; Hsueh YH; Kuo JM; Liu SJ
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29300336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Production of Biogenic Amines and Gamma-Aminobutyric Acid in the Soybean Pastes Fermented by Aspergillus oryzae and Lactobacillus brevis.
    Kim NY; Ji GE
    J Microbiol Biotechnol; 2015 Apr; 25(4):464-8. PubMed ID: 25341471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells.
    Zhang Y; Song L; Gao Q; Yu SM; Li L; Gao NF
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1619-27. PubMed ID: 22307498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032.
    Shi F; Li Y
    Biotechnol Lett; 2011 Dec; 33(12):2469-74. PubMed ID: 21826397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.
    Wu Q; Shah NP
    Crit Rev Food Sci Nutr; 2017 Nov; 57(17):3661-3672. PubMed ID: 26980301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid.
    Seo MJ; Nam YD; Lee SY; Park SL; Yi SH; Lim SI
    Biosci Biotechnol Biochem; 2013; 77(4):853-6. PubMed ID: 23563537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GlnR Negatively Regulates Glutamate-Dependent Acid Resistance in Lactobacillus brevis.
    Gong L; Ren C; Xu Y
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.
    Wu Q; Shah NP
    Food Microbiol; 2018 Feb; 69():151-158. PubMed ID: 28941896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine protected cells from H
    Xiao T; Zhang D; Tun HM; Shah NP
    World J Microbiol Biotechnol; 2022 Aug; 38(11):185. PubMed ID: 35972565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by
    Jong A; Yong CC; Oh S
    J Microbiol Biotechnol; 2019 Nov; 29(11):1745-1748. PubMed ID: 31434366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient bioconversion of L-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells.
    Shi X; Chang C; Ma S; Cheng Y; Zhang J; Gao Q
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):697-704. PubMed ID: 27155855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912.
    Wang Q; Liu X; Fu J; Wang S; Chen Y; Chang K; Li H
    Microb Cell Fact; 2018 May; 17(1):80. PubMed ID: 29778094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk.
    Rochat T; Gratadoux JJ; Gruss A; Corthier G; Maguin E; Langella P; van de Guchte M
    Appl Environ Microbiol; 2006 Aug; 72(8):5143-9. PubMed ID: 16885258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.