These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27716546)

  • 1. Effectiveness of light-reflecting devices: A systematic reanalysis of animal-vehicle collision data.
    Brieger F; Hagen R; Vetter D; Dormann CF; Storch I
    Accid Anal Prev; 2016 Dec; 97():242-260. PubMed ID: 27716546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wildlife warning reflectors do not mitigate wildlife-vehicle collisions on roads.
    Benten A; Hothorn T; Vor T; Ammer C
    Accid Anal Prev; 2018 Nov; 120():64-73. PubMed ID: 30096449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil.
    Abra FD; Granziera BM; Huijser MP; Ferraz KMPMB; Haddad CM; Paolino RM
    PLoS One; 2019; 14(4):e0215152. PubMed ID: 30973920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk factors associated with fatal animal-vehicle collisions in the United States, 1995-2004.
    Langley RL; Higgins SA; Herrin KB
    Wilderness Environ Med; 2006; 17(4):229-39. PubMed ID: 17219786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways.
    Wilkins DC; Kockelman KM; Jiang N
    Accid Anal Prev; 2019 Oct; 131():157-170. PubMed ID: 31277019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential occupant injury reduction in the U.S. vehicle fleet for lane departure warning-equipped vehicles in single-vehicle crashes.
    Kusano K; Gorman TI; Sherony R; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S157-64. PubMed ID: 25307382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario.
    Russo F; Biancardo SA; Dell'Acqua G
    Traffic Inj Prev; 2014; 15(1):25-33. PubMed ID: 24279963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In the wrong place at the wrong time: Moose and deer movement patterns influence wildlife-vehicle collision risk.
    Laliberté J; St-Laurent MH
    Accid Anal Prev; 2020 Feb; 135():105365. PubMed ID: 31775075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors.
    Kämmerle JL; Brieger F; Kröschel M; Hagen R; Storch I; Suchant R
    PLoS One; 2017; 12(9):e0184761. PubMed ID: 28953951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S109-14. PubMed ID: 26436219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Road Crossing Data into Vehicle Collision Risk Models for Moose (Alces americanus) in Massachusetts, USA.
    Zeller KA; Wattles DW; DeStefano S
    Environ Manage; 2018 Sep; 62(3):518-528. PubMed ID: 29744581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-terrain vehicle fatalities on paved roads, unpaved roads, and off-road: Evidence for informed roadway safety warnings and legislation.
    Denning GM; Jennissen CA
    Traffic Inj Prev; 2016 May; 17(4):406-12. PubMed ID: 26065484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.
    Quistberg DA; Howard EJ; Ebel BE; Moudon AV; Saelens BE; Hurvitz PM; Curtin JE; Rivara FP
    Accid Anal Prev; 2015 Nov; 84():99-111. PubMed ID: 26339944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Farm tractors on Swedish public roads--age-related perspectives on police reported incidents and injuries.
    Pinzke S; Nilsson K; Lundqvist P
    Work; 2014; 49(1):39-49. PubMed ID: 24284664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling road traffic safety based on point patterns of wildlife-vehicle collisions.
    Llagostera P; Comas C; López N
    Sci Total Environ; 2022 Nov; 846():157237. PubMed ID: 35817101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated wildlife-vehicle collision rates during the COVID-19 pandemic.
    Abraham JO; Mumma MA
    Sci Rep; 2021 Oct; 11(1):20391. PubMed ID: 34650093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species.
    Brieger F; Kämmerle JL; Hagen R; Suchant R
    Accid Anal Prev; 2022 Apr; 168():106564. PubMed ID: 35183917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dogs are the main species involved in animal-vehicle collisions in southern Spain: Daily, seasonal and spatial analyses of collisions.
    Canal D; Martín B; de Lucas M; Ferrer M
    PLoS One; 2018; 13(9):e0203693. PubMed ID: 30216383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agricultural vehicles and rural road safety: tackling a persistent problem.
    Jaarsma CF; De Vries JR
    Traffic Inj Prev; 2014; 15(1):94-101. PubMed ID: 24279972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.