These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27716586)
1. Removal of anionic pollutants by pine bark is influenced by the mechanism of retention. Paradelo R; Conde-Cid M; Arias-Estévez M; Nóvoa-Muñoz JC; Álvarez-Rodríguez E; Fernández-Sanjurjo MJ; Núñez-Delgado A Chemosphere; 2017 Jan; 167():139-145. PubMed ID: 27716586 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of pink water TNT on the surface of a low-cost adsorbent pine bark. Chusova O; Nõlvak H; Odlare M; Truu J; Truu M; Oopkaup K; Nehrenheim E Biodegradation; 2015 Sep; 26(5):375-86. PubMed ID: 26142875 [TBL] [Abstract][Full Text] [Related]
3. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of cork and pine bark powders as biosorbents for potentially toxic elements present in aqueous solution. González-Feijoo R; Santás-Miguel V; Arenas-Lago D; Álvarez-Rodríguez E; Núñez-Delgado A; Arias-Estévez M; Pérez-Rodríguez P Environ Res; 2024 Jun; 250():118455. PubMed ID: 38367838 [TBL] [Abstract][Full Text] [Related]
5. Sorption of pentachlorophenol on pine bark. Brás I; Lemos L; Alves A; Pereira MF Chemosphere; 2005 Aug; 60(8):1095-102. PubMed ID: 15993157 [TBL] [Abstract][Full Text] [Related]
6. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment. Nehrenheim E; Odlare M; Allard B Water Sci Technol; 2011; 64(10):2052-8. PubMed ID: 22105128 [TBL] [Abstract][Full Text] [Related]
7. Effect of pine bark on the biotransformation of trinitrotoluene and on the bacterial community structure in a batch experiment. Chusova O; Nolvak H; Nehrenheim E; Truu J; Odlare M; Oopkaup K; Truu M Environ Technol; 2014; 35(17-20):2456-65. PubMed ID: 25145200 [TBL] [Abstract][Full Text] [Related]
8. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate. Benhamou A; Basly JP; Baudu M; Derriche Z; Hamacha R J Colloid Interface Sci; 2013 Aug; 404():135-9. PubMed ID: 23684231 [TBL] [Abstract][Full Text] [Related]
9. Study of metal transport through pine bark for reutilization as a biosorbent. Paradelo R; Cutillas-Barreiro L; Soto-Gómez D; Nóvoa-Muñoz JC; Arias-Estévez M; Fernández-Sanjurjo MJ; Álvarez-Rodríguez E; Núñez-Delgado A Chemosphere; 2016 Apr; 149():146-53. PubMed ID: 26855218 [TBL] [Abstract][Full Text] [Related]
10. Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes. Acemioğlu B Bioresour Technol; 2004 May; 93(1):99-102. PubMed ID: 14987727 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber. Ruixia L; Jinlong G; Hongxiao T J Colloid Interface Sci; 2002 Apr; 248(2):268-74. PubMed ID: 16290531 [TBL] [Abstract][Full Text] [Related]
12. Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Palma G; Freer J; Baeza J Water Res; 2003 Dec; 37(20):4974-80. PubMed ID: 14604644 [TBL] [Abstract][Full Text] [Related]
13. The effect of co-existing solutes on arsenate removal with hydrotalcite compound. Kiso Y; Jung YJ; Yamamoto H; Oguchi T; Kuzawa K; Yamada T; Kim SS; Ahn KH Water Sci Technol; 2010; 61(5):1183-8. PubMed ID: 20220240 [TBL] [Abstract][Full Text] [Related]
14. Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material. Cederkvist K; Holm PE; Jensen MB Water Environ Res; 2010 May; 82(5):401-8. PubMed ID: 20480760 [TBL] [Abstract][Full Text] [Related]
15. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies. Nhat Ha HN; Kim Phuong NT; Boi An T; Mai Tho NT; Ngoc Thang T; Quang Minh B; Van Du C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(5):403-13. PubMed ID: 26818806 [TBL] [Abstract][Full Text] [Related]
16. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate. Nehrenheim E; Waara S; Johansson Westholm L Bioresour Technol; 2008 Mar; 99(5):998-1005. PubMed ID: 17462882 [TBL] [Abstract][Full Text] [Related]
17. Pesticide runoff from greenhouse production. Roseth R; Haarstad K Water Sci Technol; 2010; 61(6):1373-81. PubMed ID: 20351415 [TBL] [Abstract][Full Text] [Related]
18. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid. Mak MS; Rao P; Lo IM Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550 [TBL] [Abstract][Full Text] [Related]
19. Chromium and fluoride sorption/desorption on un-amended and waste-amended forest and vineyard soils and pyritic material. Romar-Gasalla A; Santás-Miguel V; Nóvoa-Muñoz JC; Arias-Estévez M; Álvarez-Rodríguez E; Núñez-Delgado A; Fernández-Sanjurjo MJ J Environ Manage; 2018 Sep; 222():3-11. PubMed ID: 29800861 [TBL] [Abstract][Full Text] [Related]
20. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn. Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]