These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 27716637)
1. Adaptation of the microdosimetric kinetic model to hypoxia. Bopp C; Hirayama R; Inaniwa T; Kitagawa A; Matsufuji N; Noda K Phys Med Biol; 2016 Nov; 61(21):7586-7599. PubMed ID: 27716637 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Inaniwa T; Kanematsu N; Shinoto M; Koto M; Yamada S Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34560678 [TBL] [Abstract][Full Text] [Related]
3. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model. Strigari L; Torriani F; Manganaro L; Inaniwa T; Dalmasso F; Cirio R; Attili A Phys Med Biol; 2018 Mar; 63(6):065012. PubMed ID: 28862152 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Furusawa Y; Fukutsu K; Aoki M; Itsukaichi H; Eguchi-Kasai K; Ohara H; Yatagai F; Kanai T; Ando K Radiat Res; 2000 Nov; 154(5):485-96. PubMed ID: 11025645 [TBL] [Abstract][Full Text] [Related]
5. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. Inaniwa T; Suzuki M; Hyun Lee S; Mizushima K; Iwata Y; Kanematsu N; Shirai T Phys Med Biol; 2020 Feb; 65(4):045005. PubMed ID: 31968318 [TBL] [Abstract][Full Text] [Related]
6. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Masuda T; Inaniwa T Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38232394 [No Abstract] [Full Text] [Related]
7. Adaptation of stochastic microdosimetric kinetic model for charged-particle therapy treatment planning. Inaniwa T; Kanematsu N Phys Med Biol; 2018 May; 63(9):095011. PubMed ID: 29726401 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Wenzl T; Wilkens JJ Radiat Oncol; 2011 Dec; 6():171. PubMed ID: 22172079 [TBL] [Abstract][Full Text] [Related]
9. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. Antonovic L; Brahme A; Furusawa Y; Toma-Dasu I J Radiat Res; 2013 Jan; 54(1):18-26. PubMed ID: 22915783 [TBL] [Abstract][Full Text] [Related]
10. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Carlson DJ; Stewart RD; Semenenko VA Med Phys; 2006 Sep; 33(9):3105-15. PubMed ID: 17022202 [TBL] [Abstract][Full Text] [Related]
11. Influence of acute hypoxia and radiation quality on cell survival. Tinganelli W; Ma NY; Von Neubeck C; Maier A; Schicker C; Kraft-Weyrather W; Durante M J Radiat Res; 2013 Jul; 54 Suppl 1(Suppl 1):i23-30. PubMed ID: 23824123 [TBL] [Abstract][Full Text] [Related]
12. DNA Repair Deficient Chinese Hamster Ovary Cells Exhibiting Differential Sensitivity to Charged Particle Radiation under Aerobic and Hypoxic Conditions. Cartwright IM; Su C; Haskins JS; Salinas VA; Sunada S; Yu H; Uesaka M; Hirakawa H; Chen DJ; Fujimori A; Kato TA Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30061540 [TBL] [Abstract][Full Text] [Related]
13. Event-by-event approach to the oxygen-effect-incorporated stochastic microdosimetric kinetic model for hypofractionated multi-ion therapy. Inaniwa T; Kanematsu N J Radiat Res; 2023 Jul; 64(4):685-692. PubMed ID: 37421442 [TBL] [Abstract][Full Text] [Related]
14. A heavy particle comparative study. Part III: OER and RBE. Raju MR; Amols HI; Bain E; Carpenter SG; Cox RA; Robertson JB Br J Radiol; 1978 Sep; 51(609):712-9. PubMed ID: 698514 [TBL] [Abstract][Full Text] [Related]
16. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes. Antonovic L; Lindblom E; Dasu A; Bassler N; Furusawa Y; Toma-Dasu I J Radiat Res; 2014 Sep; 55(5):902-11. PubMed ID: 24728013 [TBL] [Abstract][Full Text] [Related]
17. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Wenzl T; Wilkens JJ Phys Med Biol; 2011 Jun; 56(11):3251-68. PubMed ID: 21540489 [TBL] [Abstract][Full Text] [Related]
18. Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation. Mairani A; Böhlen TT; Dokic I; Cabal G; Brons S; Haberer T Int J Radiat Biol; 2013 Oct; 89(10):782-93. PubMed ID: 23627742 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of dose distributions and cell survival fractions for 1H, 4He, 12C and 16O beams using Geant4 and Microdosimetric Kinetic model. Burigo L; Pshenichnov I; Mishustin I; Bleicher M Phys Med Biol; 2015 Apr; 60(8):3313-31. PubMed ID: 25825827 [TBL] [Abstract][Full Text] [Related]
20. Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Yokota Y; Yamada S; Hase Y; Shikazono N; Narumi I; Tanaka A; Inoue M Radiat Res; 2007 Jan; 167(1):94-101. PubMed ID: 17214518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]