These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 27716637)
21. Radiobiology with heavy charged particles: a historical review. Skarsgard LD Phys Med; 1998 Jul; 14 Suppl 1():1-19. PubMed ID: 11542635 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays. Hirayama R; Uzawa A; Takase N; Matsumoto Y; Noguchi M; Koda K; Ozaki M; Yamashita K; Li H; Kase Y; Matsufuji N; Koike S; Masunaga S; Ando K; Okayasu R; Furusawa Y Mutat Res; 2013 Aug; 756(1-2):146-51. PubMed ID: 23735375 [TBL] [Abstract][Full Text] [Related]
23. Killing and mutation of Chinese hamster V79 cells exposed to accelerated oxygen and neon ions. Stoll U; Schmidt A; Schneider E; Kiefer J Radiat Res; 1995 Jun; 142(3):288-94. PubMed ID: 7761579 [TBL] [Abstract][Full Text] [Related]
24. Estimating the biological effects of helium, carbon, oxygen, and neon ion beams using 3D silicon microdosimeters. Lee SH; Mizushima K; Kohno R; Iwata Y; Yonai S; Shirai T; Pan VA; Bolst D; Tran LT; Rosenfeld AB; Suzuki M; Inaniwa T Phys Med Biol; 2021 Feb; 66(4):045017. PubMed ID: 33361575 [TBL] [Abstract][Full Text] [Related]
25. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Kase Y; Kanai T; Matsumoto Y; Furusawa Y; Okamoto H; Asaba T; Sakama M; Shinoda H Radiat Res; 2006 Oct; 166(4):629-38. PubMed ID: 17007551 [TBL] [Abstract][Full Text] [Related]
26. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Nakano T; Suzuki Y; Ohno T; Kato S; Suzuki M; Morita S; Sato S; Oka K; Tsujii H Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2185-90. PubMed ID: 16609033 [TBL] [Abstract][Full Text] [Related]
27. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Sato T; Furusawa Y Radiat Res; 2012 Oct; 178(4):341-56. PubMed ID: 22880622 [TBL] [Abstract][Full Text] [Related]
28. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions. Kundrát P Phys Med Biol; 2006 Mar; 51(5):1185-99. PubMed ID: 16481687 [TBL] [Abstract][Full Text] [Related]
29. Analytical description of the LET dependence of cell survival using the repairable-conditionally repairable damage model. Wedenberg M; Lind BK; Toma-Daşu I; Rehbinder H; Brahme A Radiat Res; 2010 Oct; 174(4):517-25. PubMed ID: 20726730 [TBL] [Abstract][Full Text] [Related]
30. Kill-painting of hypoxic tumours in charged particle therapy. Tinganelli W; Durante M; Hirayama R; Krämer M; Maier A; Kraft-Weyrather W; Furusawa Y; Friedrich T; Scifoni E Sci Rep; 2015 Nov; 5():17016. PubMed ID: 26596243 [TBL] [Abstract][Full Text] [Related]
31. Detailed probabilistic modelling of cell inactivation by ionizing radiations of different qualities: the model and its applications. Kundrát P Appl Radiat Isot; 2009 Mar; 67(3):399-401. PubMed ID: 18684633 [TBL] [Abstract][Full Text] [Related]
32. Combinatorial DNA damage pairing model based on X-ray-induced foci predicts the dose and LET dependence of cell death in human breast cells. Vadhavkar N; Pham C; Georgescu W; Deschamps T; Heuskin AC; Tang J; Costes SV Radiat Res; 2014 Sep; 182(3):273-81. PubMed ID: 25076115 [TBL] [Abstract][Full Text] [Related]
33. Dose or 'LET' painting--What is optimal in particle therapy of hypoxic tumors? Malinen E; Søvik Å Acta Oncol; 2015; 54(9):1614-22. PubMed ID: 26198655 [TBL] [Abstract][Full Text] [Related]
35. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Friedland W; Schmitt E; Kundrát P; Dingfelder M; Baiocco G; Barbieri S; Ottolenghi A Sci Rep; 2017 Mar; 7():45161. PubMed ID: 28345622 [TBL] [Abstract][Full Text] [Related]
36. A microdosimetric-kinetic model for cell killing by protracted continuous irradiation including dependence on LET I: repair in cultured mammalian cells. Hawkins RB; Inaniwa T Radiat Res; 2013 Dec; 180(6):584-94. PubMed ID: 24191898 [TBL] [Abstract][Full Text] [Related]
37. A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations. Manganaro L; Russo G; Cirio R; Dalmasso F; Giordanengo S; Monaco V; Muraro S; Sacchi R; Vignati A; Attili A Med Phys; 2017 Apr; 44(4):1577-1589. PubMed ID: 28130821 [TBL] [Abstract][Full Text] [Related]
38. Analysis of cell-survival fractions for heavy-ion irradiations based on microdosimetric kinetic model implemented in the particle and heavy ion transport code system. Sato T; Watanabe R; Kase Y; Tsuruoka C; Suzuki M; Furusawa Y; Niita K Radiat Prot Dosimetry; 2011 Feb; 143(2-4):491-6. PubMed ID: 21148591 [TBL] [Abstract][Full Text] [Related]
39. A heavy particle comparative study. Part II: cell survival versus depth. Raju MR; Bain E; Carpenter SG; Cox RA; Robertson JB Br J Radiol; 1978 Sep; 51(609):704-11. PubMed ID: 698513 [TBL] [Abstract][Full Text] [Related]
40. A theoretical cell-killing model to evaluate oxygen enhancement ratios at DNA damage and cell survival endpoints in radiation therapy. Matsuya Y; Sato T; Nakamura R; Naijo S; Date H Phys Med Biol; 2020 Apr; 65(9):095006. PubMed ID: 32135526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]