These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase. Noël JF; Wellinger RJ DNA Repair (Amst); 2011 Mar; 10(3):271-82. PubMed ID: 21190904 [TBL] [Abstract][Full Text] [Related]
23. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Zhou J; Monson EK; Teng SC; Schulz VP; Zakian VA Science; 2000 Aug; 289(5480):771-4. PubMed ID: 10926538 [TBL] [Abstract][Full Text] [Related]
24. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. di Domenico EG; Auriche C; Viscardi V; Longhese MP; Gilson E; Ascenzioni F DNA Repair (Amst); 2009 Feb; 8(2):209-18. PubMed ID: 19007917 [TBL] [Abstract][Full Text] [Related]
25. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Enomoto S; Glowczewski L; Berman J Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334 [TBL] [Abstract][Full Text] [Related]
26. Early replication of short telomeres in budding yeast. Bianchi A; Shore D Cell; 2007 Mar; 128(6):1051-62. PubMed ID: 17382879 [TBL] [Abstract][Full Text] [Related]
27. Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Lee K; Zhang Y; Lee SE Nature; 2008 Jul; 454(7203):543-6. PubMed ID: 18650924 [TBL] [Abstract][Full Text] [Related]
28. Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae. Rawal CC; Riccardo S; Pesenti C; Ferrari M; Marini F; Pellicioli A Cell Cycle; 2016 Nov; 15(21):2906-2919. PubMed ID: 27565373 [TBL] [Abstract][Full Text] [Related]
29. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Goudsouzian LK; Tuzon CT; Zakian VA Mol Cell; 2006 Nov; 24(4):603-10. PubMed ID: 17188035 [TBL] [Abstract][Full Text] [Related]
30. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Motegi A; Kuntz K; Majeed A; Smith S; Myung K Mol Cell Biol; 2006 Feb; 26(4):1424-33. PubMed ID: 16449653 [TBL] [Abstract][Full Text] [Related]
31. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern. Lefrançois P; Rockmill B; Xie P; Roeder GS; Snyder M PLoS Genet; 2016 Oct; 12(10):e1006347. PubMed ID: 27768699 [TBL] [Abstract][Full Text] [Related]
32. Cell size regulation during telomere-directed senescence in Saccharomyces cerevisiae. Matsui A; Matsuura A Biosci Biotechnol Biochem; 2010; 74(1):195-8. PubMed ID: 20057141 [TBL] [Abstract][Full Text] [Related]
33. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability. O'Rourke TW; Doudican NA; Zhang H; Eaton JS; Doetsch PW; Shadel GS Gene; 2005 Jul; 354():86-92. PubMed ID: 15907372 [TBL] [Abstract][Full Text] [Related]
34. Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms. McCulley JL; Petes TD Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11465-70. PubMed ID: 20534547 [TBL] [Abstract][Full Text] [Related]
35. Esc2 promotes telomere stability in response to DNA replication stress. Jørgensen SW; Liberti SE; Larsen NB; Lisby M; Mankouri HW; Hickson ID Nucleic Acids Res; 2019 May; 47(9):4597-4611. PubMed ID: 30838410 [TBL] [Abstract][Full Text] [Related]
36. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Myung K; Datta A; Kolodner RD Cell; 2001 Feb; 104(3):397-408. PubMed ID: 11239397 [TBL] [Abstract][Full Text] [Related]
37. Regulation of homologous recombination at telomeres in budding yeast. Eckert-Boulet N; Lisby M FEBS Lett; 2010 Sep; 584(17):3696-702. PubMed ID: 20580716 [TBL] [Abstract][Full Text] [Related]
38. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition. Ogi H; Goto GH; Ghosh A; Zencir S; Henry E; Sugimoto K Mol Biol Cell; 2015 Oct; 26(19):3480-8. PubMed ID: 26246601 [TBL] [Abstract][Full Text] [Related]
39. A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Michelson RJ; Rosenstein S; Weinert T Genes Dev; 2005 Nov; 19(21):2546-59. PubMed ID: 16230525 [TBL] [Abstract][Full Text] [Related]
40. Interplay between Top1 and Mms21/Nse2 mediated sumoylation in stable maintenance of long chromosomes. Mahendrawada L; Rai R; Kothiwal D; Laloraya S Curr Genet; 2017 Aug; 63(4):627-645. PubMed ID: 27872982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]