These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27716796)

  • 1. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity.
    Kaltenbach M; Emond S; Hollfelder F; Tokuriki N
    PLoS Genet; 2016 Oct; 12(10):e1006305. PubMed ID: 27716796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence.
    Kaltenbach M; Jackson CJ; Campbell EC; Hollfelder F; Tokuriki N
    Elife; 2015 Aug; 4():. PubMed ID: 26274563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects.
    De Luca V; Mandrich L
    Protein Pept Lett; 2020; 27(5):400-410. PubMed ID: 31868141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness.
    Sikosek T; Chan HS; Bornberg-Bauer E
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14888-93. PubMed ID: 22927372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular epistasis and the evolution of a new enzymatic function.
    Noor S; Taylor MC; Russell RJ; Jermiin LS; Jackson CJ; Oakeshott JG; Scott C
    PLoS One; 2012; 7(6):e39822. PubMed ID: 22768133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for natural lactonase and promiscuous phosphotriesterase activities.
    Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E
    J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid evolution of bacterial catabolic enzymes: a case study with atrazine chlorohydrolase.
    Seffernick JL; Wackett LP
    Biochemistry; 2001 Oct; 40(43):12747-53. PubMed ID: 11669610
    [No Abstract]   [Full Text] [Related]  

  • 9. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis.
    Emond S; Petek M; Kay EJ; Heames B; Devenish SRA; Tokuriki N; Hollfelder F
    Nat Commun; 2020 Jul; 11(1):3469. PubMed ID: 32651386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.
    Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM
    J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase.
    Mandrich L; Manco G
    Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperthermophilic phosphotriesterases/lactonases for the environment and human health.
    Mandrich L; Merone L; Manco G
    Environ Technol; 2010 Sep; 31(10):1115-27. PubMed ID: 20718294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 'evolvability' of promiscuous protein functions.
    Aharoni A; Gaidukov L; Khersonsky O; McQ Gould S; Roodveldt C; Tawfik DS
    Nat Genet; 2005 Jan; 37(1):73-6. PubMed ID: 15568024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of new enzymes by gene duplication and divergence.
    Copley SD
    FEBS J; 2020 Apr; 287(7):1262-1283. PubMed ID: 32250558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of protein dynamics in the evolution of new enzyme function.
    Campbell E; Kaltenbach M; Correy GJ; Carr PD; Porebski BT; Livingstone EK; Afriat-Jurnou L; Buckle AM; Weik M; Hollfelder F; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2016 Nov; 12(11):944-950. PubMed ID: 27618189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily.
    Roodveldt C; Tawfik DS
    Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides.
    Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y
    Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox.
    Hiblot J; Gotthard G; Elias M; Chabriere E
    PLoS One; 2013; 8(9):e75272. PubMed ID: 24086491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase.
    Afriat L; Roodveldt C; Manco G; Tawfik DS
    Biochemistry; 2006 Nov; 45(46):13677-86. PubMed ID: 17105187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the challenge of exploring the evolutionary trajectory from phosphotriesterase to arylesterase using computer simulations.
    Bora RP; Mills MJ; Frushicheva MP; Warshel A
    J Phys Chem B; 2015 Feb; 119(8):3434-45. PubMed ID: 25620270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.