BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27716950)

  • 1. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus.
    Cross H; Sønstebø JH; Nagy NE; Timmermann V; Solheim H; Børja I; Kauserud H; Carlsen T; Rzepka B; Wasak K; Vivian-Smith A; Hietala AM
    New Phytol; 2017 Feb; 213(3):1405-1417. PubMed ID: 27716950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal succession in decomposing ash leaves colonized by the ash dieback pathogen
    Kosawang C; Børja I; Herrero ML; Nagy NE; Nielsen LR; Solheim H; Timmermann V; Hietala AM
    Front Microbiol; 2023; 14():1154344. PubMed ID: 37125194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment.
    Cleary M; Nguyen D; Marčiulynienė D; Berlin A; Vasaitis R; Stenlid J
    Sci Rep; 2016 Feb; 6():21895. PubMed ID: 26900083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship between Fungal Diversity and Invasibility of a Foliar Niche-The Case of Ash Dieback.
    Agan A; Drenkhan R; Adamson K; Tedersoo L; Solheim H; Børja I; Matsiakh I; Timmermann V; Nagy NE; Hietala AM
    J Fungi (Basel); 2020 Aug; 6(3):. PubMed ID: 32858843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Native
    Hietala AM; Agan A; Nagy NE; Børja I; Timmermann V; Drenkhan R; Solheim H
    Front Microbiol; 2022; 13():892051. PubMed ID: 35711744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virulence of Hymenoscyphus albidus and H. fraxineus on Fraxinus excelsior and F. pennsylvanica.
    Kowalski T; Bilański P; Holdenrieder O
    PLoS One; 2015; 10(10):e0141592. PubMed ID: 26517266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal endophytes in Fraxinus excelsior petioles and their in vitro antagonistic potential against the ash dieback pathogen Hymenoscyphus fraxineus.
    Bilański P; Kowalski T
    Microbiol Res; 2022 Apr; 257():126961. PubMed ID: 35042053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of endophytic fungi on the ash dieback pathogen.
    Schlegel M; Dubach V; von Buol L; Sieber TN
    FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27364360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus.
    Fones HN; Mardon C; Gurr SJ
    Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traces of
    Agan A; Tedersoo L; Hanso M; Drenkhan R
    Plant Dis; 2023 Feb; 107(2):344-349. PubMed ID: 35822887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations.
    Michalko R; Košulič O; Martinek P; Birkhofer K
    J Anim Ecol; 2021 Sep; 90(9):2213-2226. PubMed ID: 34013522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of a Conspecific Mycovirus in Two Closely Related Native and Introduced Fungal Hosts and Evidence for Interspecific Virus Transmission.
    Schoebel CN; Prospero S; Gross A; Rigling D
    Viruses; 2018 Nov; 10(11):. PubMed ID: 30428556
    [No Abstract]   [Full Text] [Related]  

  • 13. Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control.
    Kosawang C; Amby DB; Bussaban B; McKinney LV; Xu J; Kjær ED; Collinge DB; Nielsen LR
    Fungal Biol; 2018; 122(2-3):110-120. PubMed ID: 29458714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong antagonism of an endophyte of
    Demir Ö; Schulz B; Rabsch L; Steinert M; Surup F
    Appl Environ Microbiol; 2024 Jun; 90(6):e0066524. PubMed ID: 38814060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing Ash Leaf-Colonizing Fungal Communities for Their Biological Control of
    Becker R; Ulrich K; Behrendt U; Kube M; Ulrich A
    Front Microbiol; 2020; 11():590944. PubMed ID: 33193255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable overexpression and targeted gene deletion of the causative agent of ash dieback Hymenoscyphus fraxineus.
    Lutz T; Hadeler B; Jaeckel M; Schulz B; Heinze C
    Fungal Biol Biotechnol; 2023 Jan; 10(1):1. PubMed ID: 36639657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea.
    Han JG; Shrestha B; Hosoya T; Lee KH; Sung GH; Shin HD
    Mycobiology; 2014 Dec; 42(4):391-6. PubMed ID: 25606012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters.
    Marçais B; Giraudel A; Husson C
    PLoS Pathog; 2023 Apr; 19(4):e1010558. PubMed ID: 37079641
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Baral HO; Bemmann M
    Mycology; 2014 Oct; 5(4):228-290. PubMed ID: 25544935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional responses in developing lesions of European common ash (Fraxinus excelsior) reveal genes responding to infection by Hymenoscyphus fraxineus.
    Sahraei SE; Cleary M; Stenlid J; Brandström Durling M; Elfstrand M
    BMC Plant Biol; 2020 Oct; 20(1):455. PubMed ID: 33023496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.