BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27717064)

  • 1. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.
    Kunori N; Takashima I
    Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats.
    Mohammed H; Jain N
    J Comp Neurol; 2016 Oct; 524(15):3104-23. PubMed ID: 27037503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats.
    Wang Y; Kurata K
    Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of sustained electromyographic activity by single intracortical microstimuli: comparison of two forelimb motor cortical areas of the rat.
    Liang F; Rouiller EM; Wiesendanger M
    Somatosens Mot Res; 1993; 10(1):51-61. PubMed ID: 8484296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area.
    Rouiller EM; Moret V; Liang F
    Somatosens Mot Res; 1993; 10(3):269-89. PubMed ID: 8237215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats.
    Touvykine B; Elgbeili G; Quessy S; Dancause N
    J Neurophysiol; 2020 Apr; 123(4):1355-1368. PubMed ID: 32130080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between rostral and caudal cortical motor areas in the rat.
    Deffeyes JE; Touvykine B; Quessy S; Dancause N
    J Neurophysiol; 2015 Jun; 113(10):3893-904. PubMed ID: 25855697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs.
    Herman D; Kang R; MacGillis M; Zarzecki P
    Exp Brain Res; 1985; 57(3):598-604. PubMed ID: 2984038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas.
    Hira R; Ohkubo F; Tanaka YR; Masamizu Y; Augustine GJ; Kasai H; Matsuzaki M
    Front Neural Circuits; 2013; 7():55. PubMed ID: 23554588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chronic unit study of the sensory properties of neurons in the forelimb areas of rat sensorimotor cortex.
    Sievert CF; Neafsey EJ
    Brain Res; 1986 Aug; 381(1):15-23. PubMed ID: 3530375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ
    Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.
    Mohammed H; Jain N
    J Comp Neurol; 2014 Feb; 522(3):528-45. PubMed ID: 23853077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study.
    Urban Iii ET; Hudson HM; Li Y; Nishibe M; Barbay S; Guggenmos DJ; Nudo RJ
    Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38265300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-ischemic reorganization of sensory responses in cerebral cortex.
    Hayley P; Tuchek C; Dalla S; Borrell J; Murphy MD; Nudo RJ; Guggenmos DJ
    Front Neurosci; 2023; 17():1151309. PubMed ID: 37332854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Readiness potential and movement initiation in the rat.
    Seki T; Gemba H; Matsuzaki R; Nakao K
    Jpn J Physiol; 2005 Feb; 55(1):1-9. PubMed ID: 15796784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study.
    Tokuno H; Tanji J
    J Comp Neurol; 1993 Jul; 333(2):199-209. PubMed ID: 8393892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor cortex is functionally organized as a set of spatially distinct representations for complex movements.
    Brown AR; Teskey GC
    J Neurosci; 2014 Oct; 34(41):13574-85. PubMed ID: 25297087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex forelimb movements and cortical topography evoked by intracortical microstimulation in male and female mice.
    Brown AR; Mitra S; Teskey GC; Boychuk JA
    Cereb Cortex; 2023 Feb; 33(5):1866-1875. PubMed ID: 35511684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.
    Xie N; Yang Q; Chappell TD; Li CX; Waters RS
    Alcohol; 2010 Mar; 44(2):185-94. PubMed ID: 20083368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.