These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27717138)

  • 41. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon-free (Co, Mn)3O4 nanowires@Ni electrodes for lithium-oxygen batteries.
    Lin X; Shang Y; Huang T; Yu A
    Nanoscale; 2014 Aug; 6(15):9043-9. PubMed ID: 24972260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesoporous Manganese Phosphonate Nanorods as a Prospective Anode for Lithium-Ion Batteries.
    Mei P; Lee J; Pramanik M; Alshehri A; Kim J; Henzie J; Kim JH; Yamauchi Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19739-19745. PubMed ID: 29808983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compositing amorphous TiO2 with N-doped carbon as high-rate anode materials for lithium-ion batteries.
    Xiao Y; Hu C; Cao M
    Chem Asian J; 2014 Jan; 9(1):351-6. PubMed ID: 24347075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sb Nanoparticles Embedded in the N-Doped Carbon Fibers as Binder-Free Anode for Flexible Li-Ion Batteries.
    Wang X; Jia N; Li J; Liu P; Zhao X; Lin Y; Sun C; Qin W
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries.
    Bao Y; Hong G; Chen Y; Chen J; Chen H; Song WL; Fang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):780-788. PubMed ID: 31849209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Cellulose-Derived Nanofibrous MnO
    Li S; Yang M; He G; Qi D; Huang J
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34202983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sandwiching Defect-Rich TiO
    Wang B; Yuan W; Zhang X; Xiang M; Zhang Y; Liu H; Wu H
    Inorg Chem; 2019 Jul; 58(13):8841-8853. PubMed ID: 31194536
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries.
    Zhao Q; Zhu Q; Miao J; Zhang P; Xu B
    Nanoscale; 2019 Apr; 11(17):8442-8448. PubMed ID: 30985850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TiO
    Wang W; Liang Y; Li F; Li N; Xu Z; Wang H; Jing M; Teng K; Niu J; Fu H
    Nanotechnology; 2018 Dec; 29(49):495601. PubMed ID: 30211699
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced graphene oxide-supported TiO2 fiber bundles with mesostructures as anode materials for lithium-ion batteries.
    Zhen M; Zhu X; Zhang X; Zhou Z; Liu L
    Chemistry; 2015 Oct; 21(41):14454-9. PubMed ID: 26315827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications.
    Srinivasan NR; Mitra S; Bandyopadhyaya R
    Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.
    Wang L; Zheng Y; Wang X; Chen S; Xu F; Zuo L; Wu J; Sun L; Li Z; Hou H; Song Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7117-25. PubMed ID: 24802130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction.
    Guo J; Liu J; Dai H; Zhou R; Wang T; Zhang C; Ding S; Wang HG
    J Colloid Interface Sci; 2017 Dec; 507():154-161. PubMed ID: 28787616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries.
    Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J
    Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of lithium storage performance of carbon microflowers by achieving a high surface area.
    Li Y; Xiao Y; Wang X; Cao M
    Chem Asian J; 2014 Jul; 9(7):1957-63. PubMed ID: 24850804
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries.
    Yuan G; Zhang W; Li H; Xie Y; Hu H; Xiao Y; Liang Y; Liu Y; Liu WR; Zheng M
    J Colloid Interface Sci; 2020 Nov; 580():638-644. PubMed ID: 32712470
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.