BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27717149)

  • 1. Microfluidic Platforms for Yeast-Based Aging Studies.
    Jo MC; Qin L
    Small; 2016 Nov; 12(42):5787-5801. PubMed ID: 27717149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination.
    Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA
    J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Monitoring of Dissection Events of Single Budding Yeast in a Microfluidic Cell-Culturing Device Integrated With Electrical Impedance Biosensor.
    Zhu Z; Geng Y; Wang Y; Liu K; Yi Z; Zhao X; Ouyang S; Zheng K; Fan Y; Wang Z
    Front Bioeng Biotechnol; 2021; 9():783428. PubMed ID: 34778241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform.
    Yu R; Jo MC; Dang W
    Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic technologies for yeast replicative lifespan studies.
    Chen KL; Crane MM; Kaeberlein M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):262-269. PubMed ID: 27015709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.
    Zhang Y; Luo C; Zou K; Xie Z; Brandman O; Ouyang Q; Li H
    PLoS One; 2012; 7(11):e48275. PubMed ID: 23144860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inexpensive microscopy system for microfluidic studies in budding yeast.
    Chen KL; Ven TN; Crane MM; Chen DE; Feng YC; Suzuki N; Russell AE; de Moraes D; Kaeberlein M
    Transl Med Aging; 2019; 3():52-56. PubMed ID: 31511839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging.
    Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ
    Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform.
    Lee SS; Avalos Vizcarra I; Huberts DH; Lee LP; Heinemann M
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4916-20. PubMed ID: 22421136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple microfluidic platform to study age-dependent protein abundance and localization changes in
    Cabrera M; Novarina D; Rempel IL; Veenhoff LM; Chang M
    Microb Cell; 2017 Apr; 4(5):169-174. PubMed ID: 28685142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis.
    Aspert T; Hentsch D; Charvin G
    Elife; 2022 Aug; 11():. PubMed ID: 35976090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging.
    Crane MM; Chen KL; Blue BW; Kaeberlein M
    Proteomics; 2020 Mar; 20(5-6):e1800420. PubMed ID: 31385433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.