BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27717540)

  • 1. Notch sensitivity jeopardizes titanium locking plate fatigue strength.
    Tseng WJ; Chao CK; Wang CC; Lin J
    Injury; 2016 Dec; 47(12):2726-2732. PubMed ID: 27717540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the screw hole structures to improve the fatigue strength of locking plates.
    Lin CH; Chao CK; Ho YJ; Lin J
    Clin Biomech (Bristol, Avon); 2018 May; 54():71-77. PubMed ID: 29567519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.
    Kandemir U; Augat P; Konowalczyk S; Wipf F; von Oldenburg G; Schmidt U
    J Orthop Trauma; 2017 Aug; 31(8):e241-e246. PubMed ID: 28394844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of merged holes, partial thread removal, and offset holes on fatigue strengths of titanium locking plates.
    Muthusamy B; Chao CK; Su SJ; Cheng CW; Lin J
    Clin Biomech (Bristol, Avon); 2022 Jun; 96():105663. PubMed ID: 35550943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates.
    Hung LW; Chao CK; Huang JR; Lin J
    Bone Joint Res; 2018 Dec; 7(12):629-635. PubMed ID: 30662709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures.
    Mugnai R; Tarallo L; Capra F; Catani F
    Orthop Traumatol Surg Res; 2018 Oct; 104(6):877-882. PubMed ID: 29807189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-threaded holes markedly increase the fatigue life of locking plates without compromising screw stability.
    Chao CK; Chen YL; Lin J
    Bone Joint Res; 2020 Oct; 9(10):645-652. PubMed ID: 33101654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notch sensitivity of titanium causing contradictory effects on locked nails and screws.
    Hsu CC; Yongyut A; Chao CK; Lin J
    Med Eng Phys; 2010 Jun; 32(5):454-60. PubMed ID: 20430681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical Comparison of Volar Fixed-Angle Locking Plates for AO C3 Distal Radius Fractures: Titanium Versus Stainless Steel With Compression.
    Marshall T; Momaya A; Eberhardt A; Chaudhari N; Hunt TR
    J Hand Surg Am; 2015 Oct; 40(10):2032-8. PubMed ID: 26253601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis.
    Zhang YK; Wei HW; Lin KP; Chen WC; Tsai CL; Lin KJ
    Injury; 2016 Jun; 47(6):1191-5. PubMed ID: 26975793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the mechanical properties of locking plates with and without screw hole inserts.
    Eichinger JK; Herzog JP; Arrington ED
    Orthopedics; 2011 Jan; 34(1):19. PubMed ID: 21210620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo biomechanical evaluation of pigeon (Columba livia) cadaver intact humeri and ostectomized humeri stabilized with caudally applied titanium locking plate or stainless steel nonlocking plate constructs.
    Darrow BG; Biskup JJ; Weigel JP; Jones MP; Xie X; Liaw PK; Tharpe JL; Sharma A; Penumadu D
    Am J Vet Res; 2017 May; 78(5):570-578. PubMed ID: 28441055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of threaded locking screws.
    Karaarslan AA; Karakaşlı A; Karcı T; Aycan H; Sesli E
    Acta Orthop Traumatol Turc; 2015; 49(5):552-7. PubMed ID: 26422352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of plate-bone contact on cyclically loaded conically coupled locking plate failure.
    Rotne R; Bertollo N; Walsh W; Dhand NK; Voss K; Johnson KA
    Injury; 2014 Mar; 45(3):515-21. PubMed ID: 24388419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanical cost of variable angle locking screws.
    Tidwell JE; Roush EP; Ondeck CL; Kunselman AR; Reid JS; Lewis GS
    Injury; 2016 Aug; 47(8):1624-30. PubMed ID: 27324325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving socket design to prevent difficult removal of locking screws.
    Lin CH; Chao CK; Tang YH; Lin J
    Injury; 2018 Mar; 49(3):585-592. PubMed ID: 29422293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of three-point bending resistance of titanium and stainless steel locking screws in intramedullary nails.
    Karaarslan AA; Karakaşlı A; Aycan H; Ertem F; Sesli E
    Eklem Hastalik Cerrahisi; 2015; 26(3):145-50. PubMed ID: 26514218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of volar locked plate constructs using smooth and threaded locking pegs.
    Yao J; Park MJ; Patel CS
    Orthopedics; 2014 Feb; 37(2):e169-73. PubMed ID: 24679204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.