BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27717770)

  • 1. Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.
    Zhu W; Yuan Y; Zhang J; Zhou F; Knickmeyer RC; Zhu H;
    Neuroimage; 2017 Feb; 146():983-1002. PubMed ID: 27717770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cautionary note on using secondary phenotypes in neuroimaging genetic studies.
    Kim J; Pan W;
    Neuroimage; 2015 Nov; 121():136-45. PubMed ID: 26220747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of secondary phenotypes in multigroup association studies.
    Zhou F; Zhou H; Li T; Zhu H
    Biometrics; 2020 Jun; 76(2):606-618. PubMed ID: 31544963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.
    Hao X; Yao X; Yan J; Risacher SL; Saykin AJ; Zhang D; Shen L;
    Neuroinformatics; 2016 Oct; 14(4):439-52. PubMed ID: 27277494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroimaging PheWAS (Phenome-Wide Association Study): A Free Cloud-Computing Platform for Big-Data, Brain-Wide Imaging Association Studies.
    Zhao L; Batta I; Matloff W; O'Driscoll C; Hobel S; Toga AW
    Neuroinformatics; 2021 Apr; 19(2):285-303. PubMed ID: 32822005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci.
    Scelsi MA; Khan RR; Lorenzi M; Christopher L; Greicius MD; Schott JM; Ourselin S; Altmann A
    Brain; 2018 Jul; 141(7):2167-2180. PubMed ID: 29860282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying genetic markers enriched by brain imaging endophenotypes in Alzheimer's disease.
    Kim M; Wu R; Yao X; Saykin AJ; Moore JH; Shen L;
    BMC Med Genomics; 2022 Aug; 15(Suppl 2):168. PubMed ID: 35915443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease.
    Potkin SG; Guffanti G; Lakatos A; Turner JA; Kruggel F; Fallon JH; Saykin AJ; Orro A; Lupoli S; Salvi E; Weiner M; Macciardi F;
    PLoS One; 2009 Aug; 4(8):e6501. PubMed ID: 19668339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for multivariate analyses of imaging genetics study in Alzheimer's disease.
    Sheng J; Wang L; Cheng H; Zhang Q; Zhou R; Shi Y
    Neurosci Lett; 2021 Sep; 762():136147. PubMed ID: 34332030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroimaging Genetics and Network Analysis in Alzheimer's Disease.
    Moon SW
    Curr Alzheimer Res; 2023; 20(8):526-538. PubMed ID: 37957920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
    Zhou T; Thung KH; Liu M; Shen D
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):165-175. PubMed ID: 29993426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured Sparse Low-Rank Regression Model for Brain-Wide and Genome-Wide Associations.
    Zhu X; Suk HI; Huang H; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():344-352. PubMed ID: 28530001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking Genetics of Brain Changes to Alzheimer's Disease: Sparse Whole Genome Association Scan of Regional MRI Volumes in the ADNI and AddNeuroMed Cohorts.
    Khondoker M; Newhouse S; Westman E; Muehlboeck JS; Mecocci P; Vellas B; Tsolaki M; Kłoszewska I; Soininen H; Lovestone S; Dobson R; Simmons A; ;
    J Alzheimers Dis; 2015; 45(3):851-64. PubMed ID: 25649652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease.
    Hao X; Li C; Du L; Yao X; Yan J; Risacher SL; Saykin AJ; Shen L; Zhang D;
    Sci Rep; 2017 Mar; 7():44272. PubMed ID: 28291242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association study identifies
    Li X; Chu SG; Shen XN; Hou XH; Xu W; Ou YN; Dong Q; Tan L; Yu JT
    Aging (Albany NY); 2019 Nov; 11(21):9862-9874. PubMed ID: 31711042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning.
    Hao X; Yao X; Risacher SL; Saykin AJ; Yu J; Wang H; Tan L; Shen L; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1986-1996. PubMed ID: 29993890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection.
    Zhao Y; Zhu H; Lu Z; Knickmeyer RC; Zou F
    Genetics; 2019 Jun; 212(2):397-415. PubMed ID: 31010934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of brain atrophy to
    Lorenzi M; Altmann A; Gutman B; Wray S; Arber C; Hibar DP; Jahanshad N; Schott JM; Alexander DC; Thompson PM; Ourselin S;
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3162-3167. PubMed ID: 29511103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP-brain network associations.
    Kim J; Pan W;
    Genet Epidemiol; 2017 Apr; 41(3):259-277. PubMed ID: 28191669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.