BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27717815)

  • 1. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.
    Mysoet J; Canu MH; Gillet C; Fourneau J; Garnier C; Bastide B; Dupont E
    Behav Brain Res; 2017 Jan; 317():434-443. PubMed ID: 27717815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.
    Mysoet J; Dupont E; Bastide B; Canu MH
    Behav Brain Res; 2015 Sep; 290():117-23. PubMed ID: 25958232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability.
    Langlet C; Bastide B; Canu MH
    Exp Neurol; 2012 Sep; 237(1):211-7. PubMed ID: 22750326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex.
    Trinel D; Picquet F; Bastide B; Canu MH
    Behav Brain Res; 2013 Jul; 249():1-7. PubMed ID: 23608484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hindlimb suspension on activation and MHC content of triceps brachii and on the representation of forepaw on the sensorimotor cortex.
    Canu MH; Stevens L; Falempin M
    Exp Neurol; 2007 Feb; 203(2):521-30. PubMed ID: 17055486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoactivity affects IGF-1 level and PI3K/AKT signaling pathway in cerebral structures implied in motor control.
    Mysoet J; Canu MH; Cieniewski-Bernard C; Bastide B; Dupont E
    PLoS One; 2014; 9(9):e107631. PubMed ID: 25226394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent changes in the electrophysiological properties of regular spiking neurons in the sensorimotor cortex of the rat in vitro.
    Canu MH; Picquet F; Bastide B; Falempin M
    Behav Brain Res; 2010 Jun; 209(2):289-94. PubMed ID: 20144900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats.
    Metzger CE; Brezicha JE; Elizondo JP; Narayanan SA; Hogan HA; Bloomfield SA
    Bone; 2017 Dec; 105():26-34. PubMed ID: 28782619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading.
    Dupont E; Stevens L; Cochon L; Falempin M; Bastide B; Canu MH
    PLoS One; 2011 Mar; 6(3):e17564. PubMed ID: 21408155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats.
    Viaro R; Budri M; Parmiani P; Franchi G
    J Physiol; 2014 May; 592(10):2137-52. PubMed ID: 24566543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hindlimb unloading on recruitment of gastrocnemius medialis muscle during treadmill locomotion in rats.
    Alexander P; Vsevolod L; Natalia M; Pavel M
    Exp Brain Res; 2021 Sep; 239(9):2793-2801. PubMed ID: 34247266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity.
    Canu MH; Garnier C; Lepoutre FX; Falempin M
    Behav Brain Res; 2005 Feb; 157(2):309-21. PubMed ID: 15639182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects.
    Li Z; Tan C; Wu Y; Ding Y; Wang H; Chen W; Zhu Y; Ma H; Yang H; Liang W; Jiang S; Wang D; Wang L; Tang G; Wang J
    Eur J Appl Physiol; 2012 Nov; 112(11):3743-53. PubMed ID: 22371114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats.
    Manohar A; Foffani G; Ganzer PD; Bethea JR; Moxon KA
    Elife; 2017 Jun; 6():. PubMed ID: 28661400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.
    Salehi MS; Mirzaii-Dizgah I; Vasaghi-Gharamaleki B; Zamiri MJ
    Neuroreport; 2016 Nov; 27(16):1202-5. PubMed ID: 27607230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle.
    Han B; Zhu MJ; Ma C; Du M
    Appl Physiol Nutr Metab; 2007 Dec; 32(6):1115-23. PubMed ID: 18059585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 9 weeks of hindlimb unloading on motor performances in adult rats.
    Kawano F; Nomura T; Kang MS; Lee JH; Han EY; Chiu YC; Sato Y; Ishihara A; Ohira Y
    J Gravit Physiol; 2000 Jul; 7(2):P115-6. PubMed ID: 12697506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.