These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 27717878)
1. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. Khoei NS; Lampis S; Zonaro E; Yrjälä K; Bernardi P; Vallini G N Biotechnol; 2017 Jan; 34():1-11. PubMed ID: 27717878 [TBL] [Abstract][Full Text] [Related]
2. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128 [TBL] [Abstract][Full Text] [Related]
3. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326 [TBL] [Abstract][Full Text] [Related]
4. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. Zhang J; Wang Y; Shao Z; Li J; Zan S; Zhou S; Yang R J Environ Sci (China); 2019 Mar; 77():238-249. PubMed ID: 30573088 [TBL] [Abstract][Full Text] [Related]
5. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Lampis S; Zonaro E; Bertolini C; Cecconi D; Monti F; Micaroni M; Turner RJ; Butler CS; Vallini G J Hazard Mater; 2017 Feb; 324(Pt A):3-14. PubMed ID: 26952084 [TBL] [Abstract][Full Text] [Related]
6. Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. Andreolli M; Lampis S; Zenaro E; Salkinoja-Salonen M; Vallini G FEMS Microbiol Lett; 2011 Jun; 319(1):11-8. PubMed ID: 21388438 [TBL] [Abstract][Full Text] [Related]
7. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965 [TBL] [Abstract][Full Text] [Related]
8. Biogenic selenium nanoparticles: current status and future prospects. Wadhwani SA; Shedbalkar UU; Singh R; Chopade BA Appl Microbiol Biotechnol; 2016 Mar; 100(6):2555-66. PubMed ID: 26801915 [TBL] [Abstract][Full Text] [Related]
9. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658 [TBL] [Abstract][Full Text] [Related]
11. Selenite Reduction and the Biogenesis of Selenium Nanoparticles by Wang Y; Shu X; Zhou Q; Fan T; Wang T; Chen X; Li M; Ma Y; Ni J; Hou J; Zhao W; Li R; Huang S; Wu L Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30227664 [TBL] [Abstract][Full Text] [Related]
12. Selenium Nanoparticle Synthesized by Wang Y; Shu X; Hou J; Lu W; Zhao W; Huang S; Wu L Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30501097 [TBL] [Abstract][Full Text] [Related]
13. Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. Xue SJ; Zhang XT; Li XC; Zhao FY; Shu X; Jiang WW; Zhang JY J Hazard Mater; 2024 May; 470():134204. PubMed ID: 38579586 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. Vogel M; Fischer S; Maffert A; Hübner R; Scheinost AC; Franzen C; Steudtner R J Hazard Mater; 2018 Feb; 344():749-757. PubMed ID: 29156387 [TBL] [Abstract][Full Text] [Related]
15. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Andreolli M; Lampis S; Poli M; Gullner G; Biró B; Vallini G Chemosphere; 2013 Jul; 92(6):688-94. PubMed ID: 23706896 [TBL] [Abstract][Full Text] [Related]
16. Selenite bioreduction with concomitant green synthesis of selenium nanoparticles by a selenite resistant EPS and siderophore producing terrestrial bacterium. Yadav P; Pandey S; Dubey SK Biometals; 2023 Oct; 36(5):1027-1045. PubMed ID: 37119424 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ N Biotechnol; 2018 Mar; 41():1-8. PubMed ID: 29174512 [TBL] [Abstract][Full Text] [Related]
18. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. Tugarova AV; Mamchenkova PV; Khanadeev VA; Kamnev AA N Biotechnol; 2020 Sep; 58():17-24. PubMed ID: 32184193 [TBL] [Abstract][Full Text] [Related]
19. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres. Bajaj M; Winter J Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Staicu LC; Ackerson CJ; Cornelis P; Ye L; Berendsen RL; Hunter WJ; Noblitt SD; Henry CS; Cappa JJ; Montenieri RL; Wong AO; Musilova L; Sura-de Jong M; van Hullebusch ED; Lens PN; Reynolds RJ; Pilon-Smits EA J Appl Microbiol; 2015 Aug; 119(2):400-10. PubMed ID: 25968181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]