BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27717896)

  • 1. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta Proteins Proteom; 2017 Jan; 1865(1):28-42. PubMed ID: 27717896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling.
    Lv Y; Zhang S; Wang J; Hu Y
    PLoS One; 2016; 11(9):e0162851. PubMed ID: 27632285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat.
    Rizwan M; Ali S; Ali B; Adrees M; Arshad M; Hussain A; Zia Ur Rehman M; Waris AA
    Chemosphere; 2019 Jan; 214():269-277. PubMed ID: 30265934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Analysis of the Effect of Inorganic and Organic Chemicals on Silver Nanoparticles in Wheat.
    Jhanzab HM; Razzaq A; Bibi Y; Yasmeen F; Yamaguchi H; Hitachi K; Tsuchida K; Komatsu S
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of seed coating with copper, iron and zinc nanoparticles on growth and yield of tomato.
    Zhao X; Chen Y; Li H; Lu J
    IET Nanobiotechnol; 2021 Oct; 15(8):674-679. PubMed ID: 34694722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study.
    Wang Y; Jiang F; Ma C; Rui Y; Tsang DCW; Xing B
    J Environ Manage; 2019 Jul; 241():319-327. PubMed ID: 31015082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture.
    Visioli G; Galieni A; Stagnari F; Bonas U; Speca S; Faccini A; Pisante M; Marmiroli N
    PLoS One; 2016; 11(6):e0156007. PubMed ID: 27281174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal nanoparticles as effective promotors for Maize production.
    Hoang SA; Nguyen LQ; Nguyen NH; Tran CQ; Nguyen DV; Le NT; Ha CV; Vu QN; Phan CM
    Sci Rep; 2019 Sep; 9(1):13925. PubMed ID: 31558736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Microbicidal Effects of Bimetallic Iron-Copper Nanoparticles on Escherichia coli and MS2 Coliphage.
    Kim HE; Lee HJ; Kim MS; Kim T; Lee H; Kim HH; Cho M; Hong SW; Lee C
    Environ Sci Technol; 2019 Mar; 53(5):2679-2687. PubMed ID: 30698421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications.
    Radini IA; Hasan N; Malik MA; Khan Z
    J Photochem Photobiol B; 2018 Jun; 183():154-163. PubMed ID: 29705508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resource: Mapping the Triticum aestivum proteome.
    Duncan O; Trösch J; Fenske R; Taylor NL; Millar AH
    Plant J; 2017 Feb; 89(3):601-616. PubMed ID: 27775198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and remobilization of iron and copper in wheat.
    Garnett TP; Graham RD
    Ann Bot; 2005 Apr; 95(5):817-26. PubMed ID: 15701664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.
    Moon YS; Park ES; Kim TO; Lee HS; Lee SE
    Environ Toxicol Pharmacol; 2014 Nov; 38(3):922-31. PubMed ID: 25461552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of proteins involved in early stage of wheat grain development by iTRAQ.
    Yang M; Dong J; Zhao W; Gao X
    J Proteomics; 2016 Mar; 136():157-66. PubMed ID: 26779988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination.
    He M; Zhu C; Dong K; Zhang T; Cheng Z; Li J; Yan Y
    BMC Plant Biol; 2015 Apr; 15():97. PubMed ID: 25888100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress.
    Noor R; Yasmin H; Ilyas N; Nosheen A; Hassan MN; Mumtaz S; Khan N; Ahmad A; Ahmad P
    Chemosphere; 2022 Apr; 292():133201. PubMed ID: 34921860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.
    Timabud T; Yin X; Pongdontri P; Komatsu S
    J Proteomics; 2016 Feb; 133():1-19. PubMed ID: 26655677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress.
    Zhang H; Hu LY; Hu KD; He YD; Wang SH; Luo JP
    J Integr Plant Biol; 2008 Dec; 50(12):1518-29. PubMed ID: 19093970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.