These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27717917)
1. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets. Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917 [TBL] [Abstract][Full Text] [Related]
2. Tensile and shear methods for measuring strength of bilayer tablets. Chang SY; Li JX; Sun CC Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920 [TBL] [Abstract][Full Text] [Related]
3. Influence of compaction properties and interfacial topography on the performance of bilayer tablets. Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259 [TBL] [Abstract][Full Text] [Related]
4. Axial strength test for round flat faced versus capsule shaped bilayer tablets. Franck J; Abebe A; Keluskar R; Martin K; Majumdar A; Kottala N; Stamato H Pharm Dev Technol; 2015 Mar; 20(2):139-45. PubMed ID: 24219774 [TBL] [Abstract][Full Text] [Related]
5. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets. Busignies V; Mazel V; Diarra H; Tchoreloff P Int J Pharm; 2013 Nov; 457(1):260-7. PubMed ID: 24055440 [TBL] [Abstract][Full Text] [Related]
6. Effect of the Curvature of the Punches on the Shape of the Interface and the Delamination Tendency of Bilayer Tablets. Castrati L; Mazel V; Diarra H; Busignies V; Tchoreloff P J Pharm Sci; 2017 May; 106(5):1331-1338. PubMed ID: 28137698 [TBL] [Abstract][Full Text] [Related]
7. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing. Podczeck F; Newton JM; Fromme P Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775 [TBL] [Abstract][Full Text] [Related]
8. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Podczeck F; Drake KR; Newton JM Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836 [TBL] [Abstract][Full Text] [Related]
9. Development of a new test for the easy characterization of the adhesion at the interface of bilayer tablets: proof-of-concept study by experimental design. Busignies V; Mazel V; Diarra H; Tchoreloff P Int J Pharm; 2014 Dec; 477(1-2):476-84. PubMed ID: 25445527 [TBL] [Abstract][Full Text] [Related]
10. Interfacial bonding in formulated bilayer tablets. Chang SY; Sun CC Eur J Pharm Biopharm; 2020 Feb; 147():69-75. PubMed ID: 31870828 [TBL] [Abstract][Full Text] [Related]
11. Reevaluation of the diametral compression test for tablets using the flattened disc geometry. Mazel V; Guerard S; Croquelois B; Kopp JB; Girardot J; Diarra H; Busignies V; Tchoreloff P Int J Pharm; 2016 Nov; 513(1-2):669-677. PubMed ID: 27702696 [TBL] [Abstract][Full Text] [Related]
12. Minimum Interfacial Bonding Strength for Bilayer Tablets Determined Using a Survival Test. Chang SY; Sun CC Pharm Res; 2019 Jul; 36(10):139. PubMed ID: 31359156 [TBL] [Abstract][Full Text] [Related]
13. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method. Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300 [TBL] [Abstract][Full Text] [Related]
14. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings. Podczeck F; Newton JM; Fromme P Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of manufacturing process parameters causing multilayer tablets delamination. Bellini M; Walther M; Bodmeier R Int J Pharm; 2019 Oct; 570():118607. PubMed ID: 31421200 [TBL] [Abstract][Full Text] [Related]
16. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements. Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and experimental investigations into the delamination tendencies of bilayer tablets. Podczeck F Int J Pharm; 2011 Apr; 408(1-2):102-12. PubMed ID: 21316433 [TBL] [Abstract][Full Text] [Related]
18. Review of bilayer tablet technology. Abebe A; Akseli I; Sprockel O; Kottala N; Cuitiño AM Int J Pharm; 2014 Jan; 461(1-2):549-58. PubMed ID: 24370841 [TBL] [Abstract][Full Text] [Related]
19. Note on the Use of Diametrical Compression to Determine Tablet Tensile Strength. Hilden J; Polizzi M; Zettler A J Pharm Sci; 2017 Jan; 106(1):418-421. PubMed ID: 27686682 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of the layer separation risk in bilayer tablets using terahertz pulsed imaging. Niwa M; Hiraishi Y; Iwasaki N; Terada K Int J Pharm; 2013 Aug; 452(1-2):249-56. PubMed ID: 23680735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]