These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 27717962)
1. Retraction Note to: Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG Appl Microbiol Biotechnol; 2016 Nov; 100(22):9807. PubMed ID: 27717962 [No Abstract] [Full Text] [Related]
2. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4. Gu W; Yang J; Lou Z; Liang L; Sun Y; Huang J; Li X; Cao Y; Meng Z; Zhang KQ PLoS One; 2011 Jan; 6(1):e16262. PubMed ID: 21283705 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis of phenolic acid decarboxylase from Enterobacter sp. Px6-4. towards enhancement of binding affinity: A computational approach. Kumar P; Kumari P; Sachan SG; Poddar R Comput Biol Chem; 2018 Oct; 76():245-255. PubMed ID: 30081341 [TBL] [Abstract][Full Text] [Related]
5. Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Gu W; Li X; Huang J; Duan Y; Meng Z; Zhang KQ; Yang J Appl Microbiol Biotechnol; 2011 Mar; 89(6):1797-805. PubMed ID: 21085952 [TBL] [Abstract][Full Text] [Related]
6. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. Bai W; Cao Y; Liu J; Wang Q; Jia Z BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339 [TBL] [Abstract][Full Text] [Related]
7. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase. Farrokh P; Yakhchali B; Karkhane AA J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599 [TBL] [Abstract][Full Text] [Related]
8. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Li Y; Yang H; Xu F Appl Microbiol Biotechnol; 2018 Aug; 102(15):6537-6545. PubMed ID: 29948121 [TBL] [Abstract][Full Text] [Related]
9. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Tang Z; Jin W; Sun R; Liao Y; Zhen T; Chen H; Wu Q; Gou L; Li C Enzyme Microb Technol; 2018 Jan; 108():74-81. PubMed ID: 29108630 [TBL] [Abstract][Full Text] [Related]
10. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27. Zhang Y; Yi L; Lin Y; Zhang L; Shao Z; Liu Z Enzyme Microb Technol; 2014 Sep; 63():64-70. PubMed ID: 25039062 [TBL] [Abstract][Full Text] [Related]
11. Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Yoon SH; Lee EG; Das A; Lee SH; Li C; Ryu HK; Choi MS; Seo WT; Kim SW Biotechnol Prog; 2007; 23(5):1143-8. PubMed ID: 17711294 [TBL] [Abstract][Full Text] [Related]
12. Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsulfate sulfotransferase. Kwon AR; Yun HJ; Choi EC Biochem Biophys Res Commun; 2001 Jul; 285(2):526-9. PubMed ID: 11444874 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity. Hwang IW; Makishima Y; Suzuki T; Kato T; Park S; Terzic A; Chung SK; Park EY Appl Microbiol Biotechnol; 2015 Nov; 99(21):8977-86. PubMed ID: 26004805 [TBL] [Abstract][Full Text] [Related]
14. Engineering of Alicyclobacillus hesperidum L-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis. Fan C; Xu W; Zhang T; Zhou L; Jiang B; Mu W Appl Biochem Biotechnol; 2015 Dec; 177(7):1480-92. PubMed ID: 26335445 [TBL] [Abstract][Full Text] [Related]
15. Engineering aromatic L-amino acid transaminase for the asymmetric synthesis of constrained analogs of L-phenylalanine. Cho BK; Seo JH; Kang TJ; Kim J; Park HY; Lee BS; Kim BG Biotechnol Bioeng; 2006 Aug; 94(5):842-50. PubMed ID: 16673402 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. Kneen MM; Stan R; Yep A; Tyler RP; Saehuan C; McLeish MJ FEBS J; 2011 Jun; 278(11):1842-53. PubMed ID: 21501384 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis. Zhang HY; Zhang J; Lin L; Du WY; Lu J Biochem Biophys Res Commun; 1993 Apr; 192(1):15-21. PubMed ID: 8476416 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis. Xie X; Huo W; Xia J; Xu Q; Chen N Enzyme Microb Technol; 2012 Jun; 51(1):59-65. PubMed ID: 22579392 [TBL] [Abstract][Full Text] [Related]
19. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Matsui T; Yoshida T; Hayashi T; Nagasawa T Arch Microbiol; 2006 Jul; 186(1):21-9. PubMed ID: 16758158 [TBL] [Abstract][Full Text] [Related]
20. Engineering the substrate binding site of benzoylformate decarboxylase. Yep A; McLeish MJ Biochemistry; 2009 Sep; 48(35):8387-95. PubMed ID: 19621900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]